Kawczynski Andrzej L., Khavrus Vyacheslav O., Strizhak Peter E.
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Chaos. 2000 Jun;10(2):299-310. doi: 10.1063/1.166496.
A detailed study of a generic model exhibiting new type of mixed-mode oscillations is presented. Period doubling and various period adding sequences of bifurcations are observed. New type of a family of 1D (one-dimensional) return maps is found. The maps are discontinuous at three points and consist of four branches. They are not invertible. The model describes in a qualitative way mixed-mode oscillations with two types of small amplitude oscillations at local maxima and local minima of large amplitude oscillations, which have been observed recently in the Belousov-Zhabotinsky system. (c) 2000 American Institute of Physics.
本文对一个展现新型混合模式振荡的通用模型进行了详细研究。观察到了倍周期分岔以及各种周期增加的分岔序列。发现了一类新型的一维返回映射。这些映射在三个点处不连续,由四个分支组成。它们不可逆。该模型定性地描述了在大幅度振荡的局部最大值和局部最小值处具有两种小幅度振荡的混合模式振荡,这种振荡最近在贝洛索夫 - 扎博廷斯基系统中被观察到。(c)2000美国物理研究所。