Suppr超能文献

Branching of 2D tori off an equilibrium of a cosymmetric system (codimension-1 bifurcation).

作者信息

Kurakin L. G., Yudovich V. I.

机构信息

Department of Mechanics and Mathematics, Rostov University, ul. Zorge 5, 344090, Rostov-on-Don, Russia.

出版信息

Chaos. 2001 Dec;11(4):780-794. doi: 10.1063/1.1408258.

Abstract

The standard object for vector fields with a nontrivial cosymmetry is a continuous one-parameter family of equilibria. Characteristically, the stability spectrum of equilibrium varies along such a family, though the spectrum always contains a zero point. Consequently, in the general position a family consists of stable and unstable arcs separated by boundary equilibria, which are neutrally stable in the linear approximation. In the present paper the central manifold method and the Lyapunov-Schmidt method are used to investigate the branching bifurcation of invariant two-dimensional tori in cosymmetric systems off a boundary equilibrium whose spectrum contains, besides the requisite point 0, two pairs of purely imaginary eigenvalues. A number of new effects, as compared with the classic case of an isolated equilibrium, are found: the bifurcation studied has codimension 1 (2 for an isolated equilibrium); it is accompanied by a branching bifurcation of a normal limit cycle; and, a stable arc can be created on an unstable arc. (c) 2001 American Institute of Physics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验