Kurakin L. G., Yudovich V. I.
Department of Mathematics and Mechanics, Rostov University, ul. Zorge 5, 344090, Rostov-on-Don, Russia.
Chaos. 1997 Sep;7(3):376-386. doi: 10.1063/1.166250.
A study is reported of the bifurcation of the branching of a cycle (Poincare-Andronov-Hopf bifurcation) from a smooth one-dimensional submanifold of equilibria of a dynamical system that depends on a vector parameter and admits cosymmetry. The paper reports a topological classification of local phase portraits near a known equilibrium, when the system parameter is close to its critical value that corresponds to an oscillatory instability. New phenomena that are not observed in the classical case of an isolated equilibrium include a delay of cycle creation with respect to the system parameter, loss of stability by the family of equilibria without loss of attraction, and the possibility of unstable supercritical self-oscillations. (c) 1997 American Institute of Physics.
本文报道了一个关于周期分支(庞加莱 - 安德罗诺夫 - 霍普夫分支)从依赖于向量参数且具有余对称性的动力系统平衡态的光滑一维子流形分叉的研究。当系统参数接近对应于振荡不稳定性的临界值时,论文给出了已知平衡点附近局部相图的拓扑分类。在孤立平衡点的经典情形中未观察到的新现象包括:周期产生相对于系统参数的延迟、平衡点族失去稳定性而吸引力未失,以及不稳定超临界自振荡的可能性。(c) 1997美国物理研究所。