Tanikawa Kiyotaka, Yamaguchi Yoshihiro
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan.
Chaos. 2002 Mar;12(1):33-41. doi: 10.1063/1.1436064.
We study the coexistence of symmetric non-Birkhoff periodic orbits of C(1) reversible monotone twist mappings on the cylinder. We prove the equivalence of the existence of non-Birkhoff periodic orbits and that of transverse homoclinic intersections of stable and unstable manifolds of the fixed point. We derive the positional relation of symmetric Birkhoff and non-Birkhoff periodic orbits and obtain the dynamical ordering of symmetric non-Birkhoff periodic orbits. An extension of the Sharkovskii ordering to two-dimensional mappings has been carried out. In the proof of various properties of the mappings, reversibility plays an essential role. (c) 2002 American Institute of Physics.