Rom-Kedar Vered
The Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, P.O.B. 26, Rehovot 76100, Israel.
Chaos. 1995 Jun;5(2):385-401. doi: 10.1063/1.166109.
We develop criteria for detecting secondary intersections and tangencies of the stable and unstable manifolds of hyperbolic periodic orbits appearing in time-periodically perturbed one degree of freedom Hamiltonian systems. A function, called the "Secondary Melnikov Function" (SMF) is constructed, and it is proved that simple (resp. degenerate) zeros of this function correspond to transverse (resp. tangent) intersections of the manifolds. The theory identifies and predicts the rotary number of the intersection (the number of "humps" of the homoclinic orbit), the transition number of the homoclinic points (the number of periods between humps), the existence of tangencies, and the scaling of the intersection angles near tangent bifurcations perturbationally. The theory predicts the minimal transition number of the homoclinic points of a homoclinic tangle. This number determines the relevant time scale, the minimal stretching rate (which is related to the topological entropy) and the transport mechanism as described by the TAM, a transport theory for two-dimensional area-preserving chaotic maps. The implications of this theory on the study of dissipative systems have yet to be explored. (c) 1995 American Institute of Physics.
我们制定了用于检测在时间周期扰动的单自由度哈密顿系统中出现的双曲周期轨道的稳定和不稳定流形的二次相交和相切的准则。构造了一个称为“二次梅尔尼科夫函数”(SMF)的函数,并证明该函数的简单(分别为退化)零点对应于流形的横向(分别为相切)相交。该理论识别并预测相交的旋转数(同宿轨道的“驼峰”数量)、同宿点的过渡数(驼峰之间的周期数)、相切的存在以及在相切分岔附近相交角的缩放比例。该理论预测了同宿缠结的同宿点的最小过渡数。这个数字确定了相关的时间尺度、最小拉伸率(与拓扑熵有关)以及由TAM描述的传输机制,TAM是一种用于二维保面积混沌映射的传输理论。该理论对耗散系统研究的影响还有待探索。(c)1995美国物理研究所。