Barreira Luis, Pesin Yakov, Schmeling Jorg
Departamento de Matematica, Instituto Superior Tecnico, 1096 Lisboa, Portugal.
Chaos. 1997 Mar;7(1):27-38. doi: 10.1063/1.166232.
We introduce the mathematical concept of multifractality and describe various multifractal spectra for dynamical systems, including spectra for dimensions and spectra for entropies. We support the study by providing some physical motivation and describing several nontrivial examples. Among them are subshifts of finite type and one-dimensional Markov maps. An essential part of the article is devoted to the concept of multifractal rigidity. In particular, we use the multifractal spectra to obtain a "physical" classification of dynamical systems. For a class of Markov maps, we show that, if the multifractal spectra for dimensions of two maps coincide, then the maps are differentiably equivalent. (c) 1997 American Institute of Physics.
我们引入多重分形的数学概念,并描述动力系统的各种多重分形谱,包括维数谱和熵谱。我们通过提供一些物理动机并描述几个重要例子来支持这项研究。其中包括有限型子转移和一维马尔可夫映射。本文的一个重要部分致力于多重分形刚性的概念。特别地,我们使用多重分形谱来获得动力系统的“物理”分类。对于一类马尔可夫映射,我们证明,如果两个映射的维数多重分形谱重合,那么这两个映射是微分等价的。(c)1997美国物理学会。