Milanovic Lj., Posch H. A., Hoover Wm. G.
Institut fur Experimentalphysik, Universitat Wien, Boltzmanngasse 5, A-1090 Wien, Austria.
Chaos. 1998 Jun;8(2):455-461. doi: 10.1063/1.166326.
We generalize Benettin's classical algorithm for the computation of the full Lyapunov spectrum to the case of a two-dimensional fluid composed of linear molecules modeled as hard dumbbells. Each dumbbell, two hard disks of diameter sigma with centers separated by a fixed distance d, may translate and rotate in the plane. We study the mixing between these qualitatively different degrees of freedom and its influence on the full set of Lyapunov exponents. The phase flow consists of smooth streaming interrupted by hard elastic collisions. We apply the exact collision rules for the differential offset vectors in tangent space to the computation of the Lyapunov exponents, and of time-averaged offset-vector projections into various subspaces of the phase space. For the case of a homogeneous mass distribution within a dumbbell we find that for small enough d/sigma, depending on the density, the translational part of the Lyapunov spectrum is decoupled from the rotational part and converges to the spectrum of hard disks. (c) 1998 American Institute of Physics.
我们将贝内蒂计算完整李雅普诺夫谱的经典算法推广到由线性分子建模为硬哑铃的二维流体情形。每个哑铃由两个直径为σ的硬圆盘组成,其中心相距固定距离d,可在平面内平移和旋转。我们研究这些性质不同的自由度之间的混合及其对李雅普诺夫指数全集的影响。相流由硬弹性碰撞中断的平滑流动组成。我们将切空间中微分偏移向量的精确碰撞规则应用于李雅普诺夫指数的计算,以及时间平均偏移向量投影到相空间的各个子空间的计算。对于哑铃内质量分布均匀的情形,我们发现对于足够小的d/σ,取决于密度,李雅普诺夫谱的平移部分与旋转部分解耦,并收敛到硬圆盘的谱。(c)1998美国物理研究所。