Suppr超能文献

螺旋波动力学中的复杂性(a))。

Complexity in spiral wave dynamics(a)).

作者信息

Nagy-Ungvarai Zsuzsanna, Ungvarai Janos, Muller Stefan C.

机构信息

Max-Planck-Institut fur Ernahrungsphysiologie, Rheinlanddamm 201, D-4600 Dortmund, Germany.

出版信息

Chaos. 1993 Jan;3(1):15-19. doi: 10.1063/1.165973.

Abstract

In closed systems of the Belousov-Zhabotinsky reaction a large number of dynamic states found in open systems is sampled as they evolve in time. During such slow aging processes of thin solution layers, prepared under appropriately chosen chemical conditions, an unexpectedly rich variety of spiral tip behavior was observed experimentally. Within a (concentration, time) parameter plane, the movement of free ends of waves was classified as follows: (a) in a stable domain-periodic rigid rotation with cores of small (200 &mgr;m) or very large (2 mm) diameter; quasiperiodic compound motion along a hypocycle, a straight loopy line or an epicycle; complex meandering composed of possibly more than two components; (b) rectilinear tip motion indicating the boundary of spiral wave stability; and (c) in an unstable domain-shrinking of open ends of wave fronts during propagation. The main properties of these parameters are compared with recently published computer calculations.

摘要

在Belousov-Zhabotinsky反应的封闭系统中,当开放系统中发现的大量动态状态随时间演化时,会对其进行采样。在适当选择的化学条件下制备的薄溶液层的这种缓慢老化过程中,实验观察到了出乎意料的丰富多样的螺旋尖端行为。在(浓度,时间)参数平面内,波自由端的运动分类如下:(a)在稳定域中——直径小(200μm)或非常大(2mm)的核心进行周期性刚性旋转;沿次摆线、直线环线或外摆线的准周期性复合运动;由可能两个以上分量组成的复杂蜿蜒;(b)直线尖端运动表示螺旋波稳定性的边界;以及(c)在不稳定域中——波前开放端在传播过程中收缩。将这些参数的主要特性与最近发表的计算机计算结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验