Suppr超能文献

横模激光动力学中的混沌行为。

Chaotic behavior in transverse-mode laser dynamics.

作者信息

Kaige Wang, Abraham N. B., Albano A. M.

机构信息

Department of Physics, Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, Pennsylvania 19010-2899.

出版信息

Chaos. 1993 Jul;3(3):287-294. doi: 10.1063/1.165937.

Abstract

We analyze chaotic behavior found in numerical simulations of the transverse pattern dynamics of a laser demonstrating that in some cases chaos originates in phase dynamics and is of low dimension. Investigations of both a Ginzburg-Landau equation for the complex field amplitude of the laser output and a Kuramoto-Sivashinsky-type equation for only the phase of that complex field equation find the same behavior. Both equations can be expanded in terms of spatial modes and in the chaotic regime the behavior of the modal amplitudes seems relatively independent. However, the fluctuations of the modal amplitudes are sufficiently correlated so that the spatiotemporal dynamics is a form of low dimensional chaos rather than a more complex turbulent behavior or even one that might merit the term spatiotemporal chaos.

摘要

我们分析了在激光横向模式动力学数值模拟中发现的混沌行为,结果表明在某些情况下,混沌起源于相位动力学且维度较低。对激光输出复场振幅的金兹堡 - 朗道方程以及仅针对该复场方程相位的库拉托莫 - 西瓦什金斯基型方程进行研究,发现了相同的行为。这两个方程都可以根据空间模式展开,并且在混沌区域,模式振幅的行为似乎相对独立。然而,模式振幅的涨落具有足够的相关性,使得时空动力学是一种低维混沌形式,而非更复杂的湍流行为,甚至也不是那种可能值得称为时空混沌的行为。

相似文献

1
Chaotic behavior in transverse-mode laser dynamics.
Chaos. 1993 Jul;3(3):287-294. doi: 10.1063/1.165937.
3
Scale and space localization in the Kuramoto-Sivashinsky equation.
Chaos. 1999 Jun;9(2):452-465. doi: 10.1063/1.166419.
5
Chaotic dynamics of a passively mode-locked soliton fiber ring laser.
Chaos. 2006 Mar;16(1):013128. doi: 10.1063/1.2173049.
6
Enhanced quantum fluctuations in a chaotic single mode ammonia laser.
Chaos. 1994 Mar;4(1):1-13. doi: 10.1063/1.166051.
7
Hopping behavior in the Kuramoto-Sivashinsky equation.
Chaos. 2005 Mar;15(1):13706. doi: 10.1063/1.1848311.
8
Synchronization in nonidentical complex Ginzburg-Landau equations.
Chaos. 2006 Mar;16(1):013124. doi: 10.1063/1.2170459.
10
An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation.
Proc Math Phys Eng Sci. 2015 Jul 8;471(2179):20140932. doi: 10.1098/rspa.2014.0932.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验