Rempel Erico L, Chian Abraham C-L, Macau Elbert E N, Rosa Reinaldo R
National Institute for Space Research (INPE), P. O. Box 515, 12227-010 Sao Jose dos Campos-SP, Brazil.
Chaos. 2004 Sep;14(3):545-56. doi: 10.1063/1.1759297.
This paper presents a methodology to study the role played by nonattracting chaotic sets called chaotic saddles in chaotic transitions of high-dimensional dynamical systems. Our methodology is applied to the Kuramoto-Sivashinsky equation, a reaction-diffusion partial differential equation. The paper describes a novel technique that uses the stable manifold of a chaotic saddle to characterize the homoclinic tangency responsible for an interior crisis, a chaotic transition that results in the enlargement of a chaotic attractor. The numerical techniques explained here are important to improve the understanding of the connection between low-dimensional chaotic systems and spatiotemporal systems which exhibit temporal chaos and spatial coherence.
本文提出了一种方法,用于研究被称为混沌鞍点的非吸引混沌集在高维动力系统混沌转变中所起的作用。我们的方法应用于Kuramoto-Sivashinsky方程,这是一个反应扩散偏微分方程。本文描述了一种新颖的技术,该技术利用混沌鞍点的稳定流形来刻画导致内部危机的同宿相切,内部危机是一种导致混沌吸引子扩大的混沌转变。这里所解释的数值技术对于增进对低维混沌系统与表现出时间混沌和空间相干性的时空系统之间联系的理解很重要。