Theiler James, Eubank Stephen
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501Prediction Company, 320 Aztec Street, Santa Fe, New Mexico 87501.
Chaos. 1993 Oct;3(4):771-782. doi: 10.1063/1.165936.
A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is "bleached"), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.
时间序列信号分析中常见的第一步是对数据进行数字滤波,以消除线性相关性。残差数据在频谱上是白色的(它被“白化”了),但原则上保留了原始时间序列的非线性结构。众所周知,简单的线性自相关会在估计非线性不变量(如分形维数和李雅普诺夫指数)的算法中产生虚假结果。理论上,白化数据可避免这些陷阱。但在实践中,白化会掩盖低维混沌过程的潜在确定性结构。这似乎是混沌本身的一个特性,因为非混沌数据不会受到类似影响。在一系列针对已知混沌数据的数值实验中证明了白化的不利影响。还讨论了一些理论方面的问题。