Suppr超能文献

小波滤波后的强直阵挛性脑电图记录分析

Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.

作者信息

Rosso O A, Figliola A, Creso J, Serrano E

机构信息

Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

出版信息

Med Biol Eng Comput. 2004 Jul;42(4):516-23. doi: 10.1007/BF02350993.

Abstract

EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.

摘要

在强直阵挛性癫痫发作期间获得的脑电图(EEG)信号可能会受到肌肉和生理噪声的严重污染。严重污染的脑电图信号难以进行定量分析,并且医生在目视检查时通常会将其拒收,从而导致大量收集到的信息丢失。这项工作的目的是开发一种基于计算机的针对此类脑电图的时间序列分析方法。提出了一种使用小波变换来过滤与肌肉活动相关频率的方法。该方法相对于传统滤波的优点之一是,对某些频段进行小波滤波不会改变其余频段的模式。因此,与之相关的动态特性不会改变。在使用小波去除肌肉伪迹生成“无噪声”信号后,使用非线性动力学度量工具进行了动态分析。所评估的特征参数(关联维数D2和最大李雅普诺夫指数λ1)与先前工作中获得的参数相符。获得的平均值为:发作前期D2 = 4.25,λ1 = 3.27;强直发作期D2 = 4.03,λ1 = 2.68;阵挛发作期D2 = 4.11,λ1 = 2.46。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验