Fernandez Bastien
Unite Propre de Recherche 7061, Centre de Physique Theorique, CNRS, Luminy, Case 907 F-13288 Marseille Cedex 9, France.
Chaos. 1995 Sep;5(3):602-608. doi: 10.1063/1.166129.
We examine the problem of the dynamics of interfaces in a one-dimensional space-time discrete dynamical system. Two different regimes are studied: the non-propagating and the propagating one. In the first case, after proving the existence of such solutions, we show how they can be described using Taylor expansions. The second situation deals with the assumption of a travelling wave to follow the kink propagation. Then a comparison with the corresponding continuous model is proposed. We find that these methods are useful in simple dynamical situations but their application to complex dynamical behaviour is not yet understood. (c) 1995 American Institute of Physics.
我们研究一维时空离散动力系统中界面的动力学问题。研究了两种不同的情况:非传播情况和传播情况。在第一种情况下,在证明了此类解的存在性之后,我们展示了如何使用泰勒展开式来描述它们。第二种情况涉及假设一个行波来跟踪扭结传播。然后提出了与相应连续模型的比较。我们发现这些方法在简单的动力学情形中是有用的,但它们在复杂动力学行为中的应用尚不清楚。(c)1995年美国物理研究所。