Suppr超能文献

作为一种表征一维迭代映射遍历动力学方法的转折点性质

Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps.

作者信息

Diakonos F. K., Schmelcher P.

机构信息

Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.

出版信息

Chaos. 1997 Jun;7(2):239-244. doi: 10.1063/1.166249.

Abstract

Dynamical as well as statistical properties of the ergodic and fully developed chaotic dynamics of iterative maps are investigated by means of a turning point analysis. The turning points of a trajectory are hereby defined as the local maxima and minima of the trajectory. An examination of the turning point density directly provides us with the information of the position of the fixed point for the corresponding dynamical system. Dividing the ergodic dynamics into phases consisting of turning points and nonturning points, respectively, elucidates the understanding of the organization of the chaotic dynamics for maps. The turning point map contains information on any iteration of the dynamical law and is shown to possess an asymptotic scaling behaviour which is responsible for the assignment of dynamical structures to the environment of the two fixed points of the map. Universal statistical turning point properties are derived for doubly symmetric maps. Possible applications of the observed turning point properties for the analysis of time series are discussed in some detail. (c) 1997 American Institute of Physics.

摘要

通过转折点分析,研究了迭代映射的遍历性和充分发展的混沌动力学的动力学性质以及统计性质。在此,轨迹的转折点被定义为轨迹的局部最大值和最小值。对转折点密度的研究直接为我们提供了相应动力学系统中不动点位置的信息。将遍历动力学分别划分为由转折点和非转折点组成的阶段,有助于阐明对映射混沌动力学组织的理解。转折点映射包含动力学规律任何一次迭代的信息,并且被证明具有渐近标度行为,这种行为负责将动力学结构分配到映射的两个不动点的环境中。推导了双对称映射的通用统计转折点性质。详细讨论了所观察到的转折点性质在时间序列分析中的可能应用。(c) 1997美国物理研究所。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验