Suppr超能文献

磷酸烯醇式丙酮酸羧化酶:三维结构与分子机制

Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms.

作者信息

Kai Yasushi, Matsumura Hiroyoshi, Izui Katsura

机构信息

Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.

出版信息

Arch Biochem Biophys. 2003 Jun 15;414(2):170-9. doi: 10.1016/s0003-9861(03)00170-x.

Abstract

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate and Pi using Mg2+ or Mn2+ as a cofactor. PEPC plays a key role in photosynthesis by C4 and Crassulacean acid metabolism plants, in addition to its many anaplerotic functions. Recently, three-dimensional structures of PEPC from Escherichia coli and the C4 plant maize (Zea mays) were elucidated by X-ray crystallographic analysis. These structures reveal an overall square arrangement of the four identical subunits, making up a "dimer-of-dimers" and an eight-stranded beta barrel structure. At the C-terminal region of the beta barrel, the Mn2+ and a PEP analog interact with catalytically essential residues, confirmed by site-directed mutagenesis studies. At about 20A from the beta barrel, an allosteric inhibitor (aspartate) was found to be tightly bound to down-regulate the activity of the E. coli enzyme. In the case of maize C4-PEPC, the putative binding site for an allosteric activator (glucose 6-phosphate) was also revealed. Detailed comparison of the various structures of E. coli PEPC in its inactive state with maize PEPC in its active state shows that the relative orientations of the two subunits in the basal "dimer" are different, implicating an allosteric transition. Dynamic movements were observed for several loops due to the binding of either an allosteric inhibitor, a metal cofactor, a PEP analog, or a sulfate anion, indicating the functional significance of these mobile loops in catalysis and regulation. Information derived from these three-dimensional structures, combined with related biochemical studies, has established models for the reaction mechanism and allosteric regulation of this important C-fixing enzyme.

摘要

磷酸烯醇式丙酮酸羧化酶(PEPC;EC 4.1.1.31)催化磷酸烯醇式丙酮酸(PEP)不可逆羧化形成草酰乙酸和无机磷酸,以Mg2+或Mn2+作为辅因子。除了具有多种回补功能外,PEPC在C4和景天酸代谢植物的光合作用中起着关键作用。最近,通过X射线晶体学分析阐明了来自大肠杆菌和C4植物玉米(Zea mays)的PEPC的三维结构。这些结构揭示了四个相同亚基的整体方形排列,构成一个“二聚体的二聚体”和一个八链β桶结构。在β桶的C末端区域,Mn2+和一个PEP类似物与催化必需残基相互作用,定点诱变研究证实了这一点。在距离β桶约20埃处,发现一种变构抑制剂(天冬氨酸)紧密结合以下调大肠杆菌酶的活性。对于玉米C4-PEPC,还揭示了变构激活剂(6-磷酸葡萄糖)的假定结合位点。将大肠杆菌PEPC处于无活性状态的各种结构与玉米PEPC处于活性状态的结构进行详细比较表明,基础“二聚体”中两个亚基的相对取向不同,这意味着变构转变。由于变构抑制剂、金属辅因子、PEP类似物或硫酸根阴离子的结合,观察到几个环的动态运动,表明这些可移动环在催化和调节中的功能意义。从这些三维结构获得的信息,结合相关的生化研究,已经建立了这种重要的碳固定酶的反应机制和变构调节模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验