Suppr超能文献

雪崩动力学、表面粗糙度与自组织临界性:在三维米堆上的实验

Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.

作者信息

Aegerter C M, Günther R, Wijngaarden R J

机构信息

Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 1):051306. doi: 10.1103/PhysRevE.67.051306. Epub 2003 May 27.

Abstract

We present a two-dimensional system that exhibits features of self-organized criticality. The avalanches that occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The critical exponents are tau=1.21(2) for the avalanche size distribution and D=1.99(2) for the cutoff size. Furthermore, the geometry of the avalanches is studied, leading to a fractal dimension of the active sites of d(B)=1.58(2). Using a set of scaling relations, we can calculate the roughness exponent alpha=D-d(B)=0.41(3) and the dynamic exponent z=D(2-tau)=1.56(8). This result is compared with that obtained from a power-spectrum analysis of the surface roughness, which yields alpha=0.42(3) and z=1.5(1) in excellent agreement with those obtained from the scaling relations.

摘要

我们展示了一个呈现自组织临界性特征的二维系统。发现一堆米粒表面发生的雪崩在其概率分布上呈现有限尺寸标度。对于雪崩大小分布,临界指数为τ = 1.21(2),对于截止尺寸,临界指数为D = 1.99(2)。此外,研究了雪崩的几何形状,得出活性位点的分形维数d(B)=1.58(2)。使用一组标度关系,我们可以计算粗糙度指数α = D - d(B)=0.41(3)和动力学指数z = D(2 - τ)=1.56(8)。将该结果与从表面粗糙度的功率谱分析获得的结果进行比较,后者得出α = 0.42(3)和z = 1.5(1),与从标度关系获得的结果非常吻合。

相似文献

1
Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 1):051306. doi: 10.1103/PhysRevE.67.051306. Epub 2003 May 27.
2
Relation between self-organized criticality and grain aspect ratio in granular piles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051309. doi: 10.1103/PhysRevE.85.051309. Epub 2012 May 22.
3
Crack roughness and avalanche precursors in the random fuse model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 2):026106. doi: 10.1103/PhysRevE.71.026106. Epub 2005 Feb 8.
4
Scaling properties of a rice-pile model: inertia and friction effects.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 1):051117. doi: 10.1103/PhysRevE.78.051117. Epub 2008 Nov 19.
5
Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.
Phys Rev E. 2017 Oct;96(4-1):042115. doi: 10.1103/PhysRevE.96.042115. Epub 2017 Oct 9.
6
Extremal dynamics and the approach to the critical state: experiments on a three dimensional pile of rice.
Phys Rev Lett. 2004 Feb 6;92(5):058702. doi: 10.1103/PhysRevLett.92.058702.
7
Dynamic critical approach to self-organized criticality.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):065105. doi: 10.1103/PhysRevE.72.065105. Epub 2005 Dec 15.
8
Mean-field behavior as a result of noisy local dynamics in self-organized criticality: neuroscience implications.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052139. doi: 10.1103/PhysRevE.89.052139. Epub 2014 May 27.
9
Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films.
Sci Rep. 2020 Mar 27;10(1):5641. doi: 10.1038/s41598-020-62601-y.
10
Edge effect on the power law distribution of granular avalanches.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):040301. doi: 10.1103/PhysRevE.76.040301. Epub 2007 Oct 4.

引用本文的文献

1
Anomalous Self-Organization in Active Piles.
Entropy (Basel). 2023 May 27;25(6):861. doi: 10.3390/e25060861.
2
Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films.
Sci Rep. 2020 Mar 27;10(1):5641. doi: 10.1038/s41598-020-62601-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验