Kim Sungyun, Ordonez Gonzalo
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, TX 78712, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056117. doi: 10.1103/PhysRevE.67.056117. Epub 2003 May 22.
We consider a simple model of a classical harmonic oscillator coupled to a field. In standard approaches, Langevin-type equations for bare particles are derived from Hamiltonian dynamics. These equations contain memory terms and are time-reversal invariant. In contrast, the phenomenological Langevin equations have no memory terms (they are Markovian equations) and give a time-evolution split in two branches (semigroups), each of which breaks time symmetry. A standard approach to bridge dynamics with phenomenology is to consider the Markovian approximation of the former. In this paper, we present a formulation in terms of dressed particles, which gives exact Markovian equations. We formulate dressed particles for Poincaré nonintegrable systems, through an invertible transformation operator Lambda introduced by Prigogine and co-workers. Lambda is obtained by an extension of the canonical (unitary) transformation operator U that eliminates interactions for integrable systems. Our extension is based on the removal of divergences due to Poincaré resonances, which breaks time symmetry. The unitarity of U is extended to "star unitarity" for Lambda. We show that Lambda-transformed variables have the same time evolution as stochastic variables obeying Langevin equations, and that Lambda-transformed distribution functions satisfy exact Fokker-Planck equations. The effects of Gaussian white noise are obtained by the nondistributive property of Lambda with respect to products of dynamical variables.
我们考虑一个与场耦合的经典谐振子的简单模型。在标准方法中,裸粒子的朗之万型方程是从哈密顿动力学推导出来的。这些方程包含记忆项且是时间反演不变的。相比之下,唯象朗之万方程没有记忆项(它们是马尔可夫方程),并且给出的时间演化分为两个分支(半群),每个分支都破坏了时间对称性。将动力学与唯象学联系起来的一种标准方法是考虑前者的马尔可夫近似。在本文中,我们提出了一种用 dressed 粒子表示的形式,它给出了精确的马尔可夫方程。我们通过普里戈金及其同事引入的可逆变换算子 Lambda 为庞加莱不可积系统构造 dressed 粒子。Lambda 是通过对可积系统消除相互作用的正则(酉)变换算子 U 的扩展得到的。我们的扩展基于消除由于庞加莱共振引起的发散,这破坏了时间对称性。U 的酉性扩展为 Lambda 的“星酉性”。我们表明,Lambda 变换后的变量与服从朗之万方程的随机变量具有相同的时间演化,并且 Lambda 变换后的分布函数满足精确的福克 - 普朗克方程。高斯白噪声的影响是通过 Lambda 相对于动力学变量乘积的非分配性质得到的。