Suppr超能文献

具有能量通量的横向伊辛链中的磁化分布。

Magnetization distribution in the transverse Ising chain with energy flux.

作者信息

Eisler V, Rácz Z, van Wijland F

机构信息

Institute for Theoretical Physics, Eötvös University, Pázmány sétány 1/a, 1117 Budapest, Hungary.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056129. doi: 10.1103/PhysRevE.67.056129. Epub 2003 May 27.

Abstract

The zero-temperature transverse Ising chain carrying an energy flux j(E) is studied with the aim of determining the nonequilibrium distribution functions, P(M(z)) and P(Mx) of its transverse and longitudinal magnetizations, respectively. An exact calculation reveals that P(M(z)) is a Gaussian both at j(E)=0 and at j(E) not equal to 0, and the width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluctuations, P(Mx), is evaluated numerically for spin chains of up to 20 spins. For the equilibrium case (j(E)=0), we find the expected Gaussian fluctuations away from the critical point, while the critical order-parameter fluctuations are shown to be non-Gaussian with a scaling function Phi(x)=Phi(M(x)/)=P(Mx) strongly dependent on the boundary conditions. When j(E) not equal to 0, the system displays long-range, oscillating correlations but P(Mx) is a Gaussian nevertheless, and the width of the Gaussian decreases with increasing j(E). In particular, we find that, at critical transverse field, the width has a j(-3/8)(E) asymptotic in the j(E)-->0 limit.

摘要

为了确定具有能量通量(j(E))的零温度横向伊辛链的横向和纵向磁化强度的非平衡分布函数(P(M(z)))和(P(M_x)),对其进行了研究。精确计算表明,在(j(E)=0)和(j(E)\neq0)时,(P(M(z)))均为高斯分布,且分布宽度随能量通量的增加而减小。对多达20个自旋的自旋链,数值评估了序参量涨落的分布(P(M_x))。对于平衡情况((j(E)=0)),我们发现远离临界点时预期的高斯涨落,而临界序参量涨落显示为非高斯分布,其标度函数(\varPhi(x)=\varPhi(M(x)/\langle M_x\rangle)=\langle M_x\rangle P(M_x))强烈依赖于边界条件。当(j(E)\neq0)时,系统表现出长程振荡关联,但(P(M_x))仍然是高斯分布,且高斯分布的宽度随(j(E))的增加而减小。特别地,我们发现,在临界横向场中,在(j(E)\to0)极限下,宽度具有(j^{(-3/8)}(E))的渐近形式。

相似文献

1
Magnetization distribution in the transverse Ising chain with energy flux.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056129. doi: 10.1103/PhysRevE.67.056129. Epub 2003 May 27.
2
Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066107. doi: 10.1103/PhysRevE.64.066107. Epub 2001 Nov 14.
3
Critical behavior of the mixed-spin Ising model with two competing dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026111. doi: 10.1103/PhysRevE.65.026111. Epub 2002 Jan 16.
4
Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021124. doi: 10.1103/PhysRevE.76.021124. Epub 2007 Aug 30.
5
Regularly alternating spin-1/2 anisotropic XY chains: the ground-state and thermodynamic properties.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066112. doi: 10.1103/PhysRevE.69.066112. Epub 2004 Jun 4.
6
Frustrated spin-1/2 Ising antiferromagnet on a square lattice in a transverse field.
Phys Rev E. 2018 Feb;97(2-1):022124. doi: 10.1103/PhysRevE.97.022124.
7
Stationary correlations for a far-from-equilibrium spin chain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046130. doi: 10.1103/PhysRevE.66.046130. Epub 2002 Oct 24.
8
Nonequilibrium dynamic critical scaling of the quantum Ising chain.
Phys Rev Lett. 2012 Jul 6;109(1):015701. doi: 10.1103/PhysRevLett.109.015701. Epub 2012 Jul 2.
9
Mean-field approximation and a small parameter in turbulence theory.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 2):026307. doi: 10.1103/PhysRevE.63.026307. Epub 2001 Jan 26.
10
Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061106. doi: 10.1103/PhysRevE.81.061106. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验