Hudock J, Kevrekidis P G, Malomed B A, Christodoulides D N
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056618. doi: 10.1103/PhysRevE.67.056618. Epub 2003 May 21.
We identify and investigate bimodal (vector) solitons in models of square-lattice arrays of nonlinear optical waveguides. These vector self-localized states are, in fact, self-induced channels in a nonlinear photonic-crystal matrix. Such two-dimensional discrete vector solitons are possible in waveguide arrays in which each element carries two light beams that are either orthogonally polarized or have different carrier wavelengths. Estimates of the physical parameters necessary to support such soliton solutions in waveguide arrays are given. Using Newton relaxation methods, we obtain stationary vector-soliton solutions, and examine their stability through the computation of linearized eigenvalues for small perturbations. Our results may also be applicable to other systems such as two-component Bose-Einstein condensates trapped in a two-dimensional optical lattice.
我们在非线性光波导的方形晶格阵列模型中识别并研究双峰(矢量)孤子。这些矢量自局域态实际上是非线性光子晶体矩阵中的自诱导通道。在每个元件承载两束正交偏振或具有不同载波波长的光束的波导阵列中,这种二维离散矢量孤子是可能的。给出了在波导阵列中支持此类孤子解所需的物理参数估计。使用牛顿松弛方法,我们获得了静态矢量孤子解,并通过计算小扰动的线性化本征值来检验它们的稳定性。我们的结果也可能适用于其他系统,例如捕获在二维光学晶格中的双组分玻色 - 爱因斯坦凝聚体。