Morén Anita, Hellman Ulf, Inada Yuri, Imamura Takeshi, Heldin Carl-Henrik, Moustakas Aristidis
Ludwig Institute for Cancer Research, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.
J Biol Chem. 2003 Aug 29;278(35):33571-82. doi: 10.1074/jbc.M300159200. Epub 2003 Jun 5.
Smad4 is an essential signal transducer of all transforming growth factor-beta (TGF-beta) superfamily pathways that regulate cell growth and differentiation, and it becomes inactivated in human cancers. Receptor-activated (R-) Smads can be poly-ubiquitinated in the cytoplasm or the nucleus, and this regulates their steady state levels or shutdown of the signaling pathway. Oncogenic mutations in Smad4 and other Smads have been linked to protein destabilization and proteasomal degradation. We analyzed a panel of missense mutants derived from human cancers that map in the N-terminal Mad homology (MH) 1 domain of Smad4 and result in protein instability. We demonstrate that all mutants exhibit enhanced poly-ubiquitination and proteasomal degradation. In contrast, wild type Smad4 is a relatively stable protein that undergoes mono- or oligo-ubiquitination, a modification not linked to protein degradation. Analysis of Smad4 deletion mutants indicated efficient mono- or oligo-ubiquitination of the C-terminal MH2 domain. Mass spectrometric analysis of mono-ubiquitinated Smad4 MH2 domain identified lysine 507 as a major target for ubiquitination. Lysine 507 resides in the conserved L3 loop of Smad4 and participates in R-Smad C-terminal phosphoserine recognition. Mono- or oligo-ubiquitinated Smad4 exhibited enhanced ability to oligomerize with R-Smads, whereas mutagenesis of lysine 507 led to inefficient Smad4/R-Smad hetero-oligomerization and defective transcriptional activity. Finally, overexpression of a mutant ubiquitin that only leads to mono-ubiquitination of Smad4 enhanced Smad transcriptional activity. These data suggest that oligo-ubiquitination positively regulates Smad4 function, whereas poly-ubiquitination primarily occurs in unstable cancer mutants and leads to protein degradation.
Smad4是所有转化生长因子-β(TGF-β)超家族信号通路的关键信号转导因子,这些信号通路调控细胞生长和分化,而它在人类癌症中会失活。受体激活的(R-)Smads可在细胞质或细胞核中发生多聚泛素化,这调节了它们的稳态水平或信号通路的关闭。Smad4和其他Smads中的致癌突变与蛋白质不稳定和蛋白酶体降解有关。我们分析了一组源自人类癌症的错义突变体,这些突变体位于Smad4的N端Mad同源(MH)1结构域,导致蛋白质不稳定。我们证明所有突变体都表现出增强的多聚泛素化和蛋白酶体降解。相比之下,野生型Smad4是一种相对稳定的蛋白质,会发生单泛素化或寡聚泛素化,这种修饰与蛋白质降解无关。对Smad4缺失突变体的分析表明,C端MH2结构域存在高效的单泛素化或寡聚泛素化。对单泛素化的Smad4 MH2结构域进行质谱分析,确定赖氨酸507是泛素化的主要靶点。赖氨酸507位于Smad4保守的L3环中,参与R-Smad C端磷酸丝氨酸的识别。单泛素化或寡聚泛素化的Smad4与R-Smads寡聚化的能力增强,而赖氨酸507的诱变导致Smad4/R-Smad异源寡聚化效率低下和转录活性缺陷。最后,仅导致Smad4单泛素化的突变泛素的过表达增强了Smad转录活性。这些数据表明,寡聚泛素化正向调节Smad4功能,而多聚泛素化主要发生在不稳定的癌症突变体中并导致蛋白质降解。