Tibbetts Anne S, Oesterlin Lena, Chan Sherwin Y, Kramer Gisela, Hardesty Boyd, Appling Dean R
Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA.
J Biol Chem. 2003 Aug 22;278(34):31774-80. doi: 10.1074/jbc.M304962200. Epub 2003 Jun 10.
Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by normal growth on non-fermentable carbon sources. Here we show that mitochondrial translation products in Saccharomyces cerevisiae were synthesized in the absence of formylated initiator tRNA. ifm1 mutants, lacking the mitochondrial initiation factor 2 (mIF2), are unable to respire, indicative of defective mitochondrial protein synthesis, but their respiratory defect could be complemented by plasmid-borne copies of either the yeast IFM1 gene or a cDNA encoding bovine mIF2. Moreover, the bovine mIF2 sustained normal respiration in ifm1 fmt1 double mutants. Bovine mIF2 supported the same pattern of mitochondrial translation products as yeast mIF2, and the pattern did not change in cells lacking formylated Met-tRNAfMet. Mutant yeast lacking any mIF2 retained the ability to synthesize low levels of a subset of mitochondrially encoded proteins. The ifm1 null mutant was used to analyze the domain structure of yeast mIF2. Contrary to a previous report, the C terminus of yeast mIF2 is required for its function in vivo, whereas the N-terminal domain could be deleted. Our results indicate that formylation of initiator methionyl-tRNA is not required for mitochondrial protein synthesis. The ability of bovine mIF2 to support mitochondrial translation in the yeast fmt1 mutant suggests that this phenomenon may extend to mammalian mitochondria as well.
人们普遍认为,线粒体和叶绿体中的蛋白质合成起始过程需要一种甲酰化起始甲硫氨酰 - tRNA(fMet - tRNAfMet)参与,该过程涉及起始因子2(IF2)。然而,在编码线粒体甲硫氨酰 - tRNA甲酰基转移酶的FMT1基因座处被破坏的酵母菌株,缺乏可检测到的fMet - tRNAfMet,但线粒体功能正常,这可通过在非发酵碳源上正常生长得到证明。在这里,我们表明酿酒酵母中的线粒体翻译产物是在没有甲酰化起始tRNA的情况下合成的。ifm1突变体缺乏线粒体起始因子2(mIF2),无法进行呼吸作用,这表明线粒体蛋白质合成存在缺陷,但其呼吸缺陷可以由酵母IFM1基因的质粒拷贝或编码牛mIF2的cDNA来互补。此外,牛mIF2在ifm1 fmt1双突变体中维持正常呼吸。牛mIF2支持的线粒体翻译产物模式与酵母mIF2相同,并且在缺乏甲酰化Met - tRNAfMet的细胞中该模式没有变化。缺乏任何mIF2的突变酵母保留了合成低水平线粒体编码蛋白质子集的能力。利用ifm1缺失突变体分析了酵母mIF2的结构域。与先前的报道相反,酵母mIF2的C末端在体内发挥功能是必需的,而N末端结构域可以缺失。我们的结果表明,线粒体蛋白质合成不需要起始甲硫氨酰 - tRNA的甲酰化。牛mIF2在酵母fmt1突变体中支持线粒体翻译的能力表明,这种现象可能也适用于哺乳动物线粒体。