Suppr超能文献

稳态重力-毛细水波理论中的一种破维现象。

A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves.

作者信息

Groves M D, Haragus M, Sun S M

机构信息

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2002 Oct 15;360(1799):2189-243. doi: 10.1098/rsta.2002.1066.

Abstract

The existence of a line solitary-wave solution to the water-wave problem with strong surface-tension effects was predicted on the basis of a model equation in the celebrated 1895 paper by D. J. Korteweg and G. de Vries and rigorously confirmed a century later by C. J. Amick and K. Kirchgässner in 1989. A model equation derived by B. B. Kadomtsev and V. I. Petviashvili in 1970 suggests that the Korteweg-de Vries line solitary wave belongs to a family of periodically modulated solitary waves which have a solitary-wave profile in the direction of motion and are periodic in the transverse direction. This prediction is rigorously confirmed for the full water-wave problem in the present paper. It is shown that the Korteweg-de Vries solitary wave undergoes a dimension-breaking bifurcation that generates a family of periodically modulated solitary waves. The term dimension-breaking phenomenon describes the spontaneous emergence of a spatially inhomogeneous solution of a partial differential equation from a solution which is homogeneous in one or more spatial dimensions.

摘要

基于D. J. 科特韦格和G. 德弗里斯1895年著名论文中的一个模型方程,人们预测了具有强表面张力效应的水波问题存在行孤立波解,一个世纪后的1989年,C. J. 阿米克和K. 基尔希加斯纳对此进行了严格证实。B. B. 卡多姆采夫和V. I. 彼得维夏什维利于1970年推导的一个模型方程表明,科特韦格 - 德弗里斯行孤立波属于一类周期调制孤立波,这类波在运动方向上具有孤立波轮廓,在横向方向上是周期性的。本文针对完整的水波问题严格证实了这一预测。结果表明,科特韦格 - 德弗里斯孤立波经历了一个破维分岔,产生了一族周期调制孤立波。术语“破维现象”描述了一个偏微分方程的空间非均匀解从一个在一个或多个空间维度上均匀的解自发出现的情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验