Hasinger Günther
Max-Planck Institut für extraterrestrische Physik, Giessenbachstrasse, Garching D-85741, Germany.
Philos Trans A Math Phys Eng Sci. 2002 Sep 15;360(1798):2077-90. doi: 10.1098/rsta.2002.1054.
Deep X-ray surveys have shown that the cosmic X-ray background (XRB) is largely due to the accretion onto supermassive black holes, integrated over the cosmic time. The Röntgensatellit (ROSAT), Chandra and XMM-Newton satellites have resolved more than 80% of the 0.1-10 keV X-ray background into discrete sources. Optical spectroscopic identifications are ca. 90% and 60% complete, for the deepest ROSAT and Chandra/XMM-Newton surveys, respectively, and show that the sources producing the bulk of the X-ray background are a mixture of obscured (type-1) and unobscured (type-2) active galactic nuclei (AGN), as predicted by the XRB population-synthesis models, following the unified AGN scenarios. The characteristic hard spectrum of the XRB can be explained if most of the AGN are heavily absorbed and, in particular, a class of highly luminous type-2 AGN, so called QSO-2s, exist. The Chandra and XMM-Newton satellites have recently detected several examples of QSO-2s. The space density of the X-ray selected AGN, as determined from ROSAT surveys, does not seem to decline as rapidly as that of optically selected QSOs; however, the statistics of the high-redshift samples is still rather poor. The new Chandra and XMM-Newton surveys at significantly fainter fluxes are starting to provide additional constraints here, but the preliminary observed redshift distribution peaks at much lower redshifts (z = 0.5-1) than the predictions based on the ROSAT data. Nevertheless, there is an indication of a decline of the space density of X-ray-selected AGN at redshifts above four.
深度X射线巡天表明,宇宙X射线背景(XRB)在很大程度上是由于超大质量黑洞在宇宙时间内的吸积作用。伦琴卫星(ROSAT)、钱德拉X射线天文台和XMM-牛顿卫星已将0.1 - 10 keV X射线背景中超过80%分解为离散源。对于最深的ROSAT巡天和钱德拉/XMM-牛顿巡天,光学光谱识别分别约完成了90%和60%,结果表明,产生大部分X射线背景的源是统一活动星系核(AGN)模型所预测的、被遮挡(1型)和未被遮挡(2型)的活动星系核的混合体。如果大多数AGN被严重吸收,特别是存在一类高光度2型AGN,即所谓的QSO-2s,那么XRB的特征硬谱就能得到解释。钱德拉X射线天文台和XMM-牛顿卫星最近探测到了几个QSO-2s的例子。根据ROSAT巡天确定的X射线选择的AGN的空间密度,其下降速度似乎不像光学选择的类星体那么快;然而,高红移样本的统计数据仍然相当匮乏。钱德拉X射线天文台和XMM-牛顿卫星在显著更暗的通量下进行的新巡天开始在此提供更多限制,但初步观测到的红移分布峰值的红移(z = 0.5 - 1)比基于ROSAT数据的预测要低得多。尽管如此,有迹象表明在红移大于4时,X射线选择的AGN的空间密度会下降。