Suppr超能文献

The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment.

作者信息

Bosques Carlos J, Imperiali Barbara

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7593-8. doi: 10.1073/pnas.1232504100. Epub 2003 Jun 12.

Abstract

It is now accepted that the structural transition from cellular prion protein (PrPC) to proteinase K-resistant prion protein scrapie (PrPSc) is the major event leading to transmissible spongiform encephalopathies. Although the mechanism of this transition remains elusive, glycosylation has been proposed to impede the PrPC to PrPSc conversion. To address the role of glycosylation, we have prepared glycosylated and unglycosylated peptides derived from the 175-195 fragment of the human prion protein. Comparison of the structure, aggregation kinetics, fibril formation capabilities, and redox susceptibility of Cys-179 has shown that the N-linked glycan (at Asn-181) significantly reduces the rate of fibrillization by promoting intermolecular disulfide formation via Cys-179. Further-more, the aggressive fibrillization of a C179S mutant of this fragment highlights the significant role of disulfide stability in retarding the rate of fibril formation. The implications of these studies are discussed in the context of fibril formation in the intact prion protein.

摘要

相似文献

1
The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7593-8. doi: 10.1073/pnas.1232504100. Epub 2003 Jun 12.
2
Separation of scrapie prion infectivity from PrP amyloid polymers.
J Mol Biol. 1996 Jun 21;259(4):608-21. doi: 10.1006/jmbi.1996.0343.
3
Molecular properties of complexes formed between the prion protein and synthetic peptides.
J Mol Biol. 1997 Jul 25;270(4):574-86. doi: 10.1006/jmbi.1997.1135.
5
In vitro evaluation of the anti-prionic activity of newly synthesized congo red derivatives.
Arzneimittelforschung. 2003;53(12):875-88. doi: 10.1055/s-0031-1299845.
6
Spectroscopic characterization of conformational differences between PrPC and PrPSc: an alpha-helix to beta-sheet transition.
Philos Trans R Soc Lond B Biol Sci. 1994 Mar 29;343(1306):435-41. doi: 10.1098/rstb.1994.0041.
7
Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein.
Acta Biochim Biophys Sin (Shanghai). 2019 Dec 13;51(12):1223-1232. doi: 10.1093/abbs/gmz124.
8
Prion protein glycosylation is sensitive to redox change.
J Biol Chem. 1999 Dec 3;274(49):34846-50. doi: 10.1074/jbc.274.49.34846.
9
How does domain replacement affect fibril formation of the rabbit/human prion proteins.
PLoS One. 2014 Nov 17;9(11):e113238. doi: 10.1371/journal.pone.0113238. eCollection 2014.
10
The deletion of amino acids 114-121 in the TM1 domain of mouse prion protein stabilizes its conformation but does not affect the overall structure.
Biochim Biophys Acta. 2008 Jun;1783(6):1076-84. doi: 10.1016/j.bbamcr.2007.11.007. Epub 2007 Nov 29.

引用本文的文献

1
Post-translational modifications in prion diseases.
Front Mol Neurosci. 2024 Jul 1;17:1405415. doi: 10.3389/fnmol.2024.1405415. eCollection 2024.
2
Enhanced therapeutic window for antimicrobial Pept-ins by investigating their structure-activity relationship.
PLoS One. 2023 Mar 31;18(3):e0283674. doi: 10.1371/journal.pone.0283674. eCollection 2023.
3
Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy.
Pharmaceuticals (Basel). 2023 Mar 14;16(3):439. doi: 10.3390/ph16030439.
4
Hidden Relationships between -Glycosylation and Disulfide Bonds in Individual Proteins.
Int J Mol Sci. 2022 Mar 29;23(7):3742. doi: 10.3390/ijms23073742.
6
Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide.
J Phys Chem B. 2021 Jun 24;125(24):6559-6571. doi: 10.1021/acs.jpcb.1c02083. Epub 2021 Jun 15.
8
Prion protein post-translational modifications modulate heparan sulfate binding and limit aggregate size in prion disease.
Neurobiol Dis. 2020 Aug;142:104955. doi: 10.1016/j.nbd.2020.104955. Epub 2020 May 24.
9
Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease.
J Clin Invest. 2020 Mar 2;130(3):1350-1362. doi: 10.1172/JCI131564.

本文引用的文献

1
Prion protein and the transmissible spongiform encephalopathies.
Trends Cell Biol. 1997 Feb;7(2):56-62. doi: 10.1016/S0962-8924(96)10054-4.
2
Molecular biology of prion diseases.
Trends Cell Biol. 1994 Jan;4(1):10-4. doi: 10.1016/0962-8924(94)90032-9.
3
Oligosaccharyl transferase: gatekeeper to the secretory pathway.
Curr Opin Chem Biol. 2002 Dec;6(6):844-50. doi: 10.1016/s1367-5931(02)00390-3.
4
Formation and transfer of disulphide bonds in living cells.
Nat Rev Mol Cell Biol. 2002 Nov;3(11):836-47. doi: 10.1038/nrm954.
5
Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol.
Science. 2002 Nov 29;298(5599):1781-5. doi: 10.1126/science.1073725. Epub 2002 Oct 17.
6
Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol.
Science. 2002 Nov 29;298(5599):1785-8. doi: 10.1126/science.1073619. Epub 2002 Oct 17.
7
Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation.
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14955-60. doi: 10.1073/pnas.011578098. Epub 2001 Dec 11.
8
Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein.
EMBO J. 2001 Oct 1;20(19):5383-91. doi: 10.1093/emboj/20.19.5383.
10
Prion glycoprotein: structure, dynamics, and roles for the sugars.
Biochemistry. 2001 Apr 3;40(13):3759-66. doi: 10.1021/bi002625f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验