Bidleman Terry F, Leone Andi D, Falconer Renee L, Harner Tom, Jantunen Liisa M M, Wiberg Karin, Helm Paul A, Diamond Miriam L, Loo Binh
Meteorological Service of Canada, 4905 Dufferin Street, Downsview, ON M3H 5T4.
ScientificWorldJournal. 2002 Feb 8;2:357-73. doi: 10.1100/tsw.2002.109.
The enantiomers of chiral pesticides are often metabolised at different rates in soil and water, leading to nonracemic residues. This paper reviews enantioselective metabolism of organochlorine pesticides (OCPs) in soil and water, and the use of enantiomers to follow transport and fate processes. Residues of chiral OCPs and their metabolites are frequently nonracemic in soil, although exceptions occur in which the OCPs are racemic. In soils where enantioselective degradation and/or metabolite formation has taken place, some OCPs usually show the same degradation preference--e.g., depletion of (+)trans-chlordane (TC) and (-)cis-chlordane (CC), and enrichment of the metabolite (+)heptachlor exo-epoxide (HEPX). The selectivity is ambivalent for other chemicals; preferential loss of either (+) or (-)o,p-DDT and enrichment of either (+) or (-)oxychlordane (OXY) occurs in different soils. Nonracemic OCPs are found in air samples collected above soil which contains nonracemic residues. The enantiomer profiles of chlordanes in ambient air suggests that most chlordane in northern Alabama air comes from racemic sources (e.g., termiticide emissions), whereas a mixture of racemic and nonracemic (volatilisation from soil) sources supplies chlordane to air in the Great Lakes region. Chlordanes and HEPX are also nonracemic in arctic air, probably the result of soil emissions from lower latitudes. The (+) enantiomer of alpha-hexachlorocyclohexane (alpha-HCH) is preferentially metabolised in the Arctic Ocean, arctic lakes and watersheds, the North American Great Lakes, and the Baltic Sea. In some marine regions (the Bering and Chukchi Seas, parts of the North Sea) the preference is reversed and (-)alpha-HCH is depleted. Volatilisation from seas and large lakes can be traced by the appearance of nonracemic alpha-HCH in the air boundary layer above the water. Estimates of microbial degradation rates for alpha-HCH in the eastern Arctic Ocean and an arctic lake have been made from the enantiomer fractions (EFs) and mass balance in the water column. Apparent pseudo first-order rate constants in the eastern Arctic Ocean are 0.12 year(-1) for (+)alpha-HCH, 0.030 year(-1) for (-)alpha-HCH, and 0.037 year(-1) for achiral gamma-HCH. These rate constants are 3-10 times greater than those for basic hydrolysis in seawater. Microbial breakdown may compete with advective outflow for long-term removal of HCHs from the Arctic Ocean. Rate constants estimated for the arctic lake are about 3-8 times greater than those in the ocean.
手性农药的对映体在土壤和水中的代谢速率往往不同,导致残留并非外消旋体。本文综述了有机氯农药(OCPs)在土壤和水中的对映体选择性代谢,以及利用对映体追踪其迁移和归宿过程。手性OCPs及其代谢物在土壤中的残留通常并非外消旋体,不过也有OCPs呈外消旋体的例外情况。在发生对映体选择性降解和/或代谢物形成的土壤中,一些OCPs通常表现出相同的降解偏好——例如,(+)反式氯丹(TC)和(-)顺式氯丹(CC)减少,代谢物(+)七氯环氧物(HEPX)富集。其他化学物质的选择性则较为复杂;在不同土壤中,(+)或(-)o,p-滴滴涕会优先减少,(+)或(-)氧氯丹(OXY)会富集。在含有非外消旋体残留的土壤上方采集的空气样本中发现了非外消旋体的OCPs。阿拉巴马州北部空气中氯丹的对映体分布表明,该地区空气中的大多数氯丹来自外消旋体来源(如白蚁防治剂排放),而在五大湖地区,外消旋体和非外消旋体(从土壤挥发)来源的混合物为空气提供氯丹。氯丹和HEPX在北极空气中也是非外消旋体,这可能是低纬度地区土壤排放的结果。α-六氯环己烷(α-HCH)的(+)对映体在北冰洋、北极湖泊和流域、北美五大湖以及波罗的海优先被代谢。在一些海洋区域(白令海和楚科奇海、北海部分海域),这种偏好则相反,(-)α-HCH减少。海洋和大型湖泊的挥发可通过水体上方空气边界层中出现的非外消旋体α-HCH来追踪。根据北冰洋东部和一个北极湖泊中α-HCH的对映体分数(EFs)和水柱中的质量平衡,估算了微生物降解速率。北冰洋东部(+)α-HCH的表观假一级速率常数为0.12年⁻¹,(-)α-HCH为0.030年⁻¹,非手性γ-HCH为0.037年⁻¹。这些速率常数比海水中碱性水解的速率常数大3至10倍。微生物分解可能与平流流出竞争,以实现从北冰洋长期去除六氯环己烷。北极湖泊估算的速率常数约比海洋中的大3至8倍。