Suppr超能文献

抗癌药物、基因变异与谷胱甘肽-S-转移酶基因家族

Cancer drugs, genetic variation and the glutathione-S-transferase gene family.

作者信息

Townsend Danyelle, Tew Kenneth

机构信息

Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, Pennslyvania 19111, USA.

出版信息

Am J Pharmacogenomics. 2003;3(3):157-72. doi: 10.2165/00129785-200303030-00002.

Abstract

The glutathione-S-transferase (GST) super family comprises multiple isozymes (Alpha, Mu, Pi, Omega, Theta, and Zeta) with compelling evidence of functional polymorphic variation. Over the last two decades, a significant body of data has accumulated linking aberrant expression of GST isozymes with the development and expression of resistance to cancer drugs. Clinical correlation studies show that genetic differences within the human GST isozymes may play a role in cancer susceptibility and treatment. The initial confusion was presented by the fact that not all drugs used to select for resistance were substrates for thioether bond catalysis by GSTs. However, recent evidence that certain GST isozymes possess the capacity to regulate mitogen activated protein kinases presents an alternative explanation. This dual functionality has contributed to the recent efforts to target GSTs with novel small molecule therapeutics. While the ultimate success of these attempts remains to be shown, at least one drug is in late-stage clinical testing. In addition, the concept of designing new drugs that might interfere with protein:protein interactions between GSTs and regulatory kinases provides a novel approach to identify new targets in the search for cancer therapeutics.

摘要

谷胱甘肽 - S - 转移酶(GST)超家族由多种同工酶(α、μ、π、ω、θ和ζ)组成,有令人信服的证据表明其存在功能性多态性变异。在过去二十年中,积累了大量数据,将GST同工酶的异常表达与癌症药物耐药性的产生和表达联系起来。临床相关性研究表明,人类GST同工酶内的基因差异可能在癌症易感性和治疗中发挥作用。最初的困惑在于,并非所有用于筛选耐药性的药物都是GST硫醚键催化的底物。然而,最近有证据表明某些GST同工酶具有调节丝裂原活化蛋白激酶的能力,这提供了另一种解释。这种双重功能推动了近期利用新型小分子疗法靶向GST的努力。虽然这些尝试的最终成功还有待证明,但至少有一种药物已进入后期临床试验。此外,设计可能干扰GST与调节激酶之间蛋白质:蛋白质相互作用的新药的概念,为寻找癌症治疗新靶点提供了一种新方法。

相似文献

1
Cancer drugs, genetic variation and the glutathione-S-transferase gene family.
Am J Pharmacogenomics. 2003;3(3):157-72. doi: 10.2165/00129785-200303030-00002.
2
Glutathione S-transferase polymorphisms: cancer incidence and therapy.
Oncogene. 2006 Mar 13;25(11):1639-48. doi: 10.1038/sj.onc.1209373.
3
The role of glutathione-S-transferase in anti-cancer drug resistance.
Oncogene. 2003 Oct 20;22(47):7369-75. doi: 10.1038/sj.onc.1206940.
4
Analysis of the glutathione S-transferase (GST) gene family.
Hum Genomics. 2004 Nov;1(6):460-4. doi: 10.1186/1479-7364-1-6-460.
8
Glutathione S-transferase and drug resistance.
Cancer Treat Res. 1989;48:171-87. doi: 10.1007/978-1-4613-1601-5_11.
9
Purification and characterization of class mu glutathione S-transferase isozymes from rabbit hepatic tissue.
Arch Biochem Biophys. 1993 Mar;301(2):404-10. doi: 10.1006/abbi.1993.1163.

引用本文的文献

1
Glutathione Transferases Omega-1 and -2 Polymorphisms in Cancer: Drivers or Silent Bystanders?
Int J Mol Sci. 2025 Jul 9;26(14):6586. doi: 10.3390/ijms26146586.
2
Exploring the Molecular Mechanism and Role of Glutathione S-Transferase P in Prostate Cancer.
Biomedicines. 2025 Apr 26;13(5):1051. doi: 10.3390/biomedicines13051051.
3
The glutathione S-transferase Gstt1 drives survival and dissemination in metastases.
Nat Cell Biol. 2024 Jun;26(6):975-990. doi: 10.1038/s41556-024-01426-7. Epub 2024 Jun 11.
4
Potential antitumour effect of all-trans retinoic acid on regorafenib-treated human colon cancer cell lines.
Contemp Oncol (Pozn). 2023;27(3):198-210. doi: 10.5114/wo.2023.133742. Epub 2023 Dec 21.
7
The Multifaceted Role of Glutathione S-Transferases in Health and Disease.
Biomolecules. 2023 Apr 18;13(4):688. doi: 10.3390/biom13040688.
8
Glutathione-S-transferases genes-promising predictors of hepatic dysfunction.
World J Hepatol. 2021 Jun 27;13(6):620-633. doi: 10.4254/wjh.v13.i6.620.
9
GSTP1 as a novel target in radiation induced lung injury.
J Transl Med. 2021 Jul 8;19(1):297. doi: 10.1186/s12967-021-02978-0.
10
In Vitro and in Vivo Efficacy of NBDHEX on Gefitinib-resistant Human Non-small Cell Lung Cancer.
J Cancer. 2020 Oct 18;11(24):7216-7223. doi: 10.7150/jca.46461. eCollection 2020.

本文引用的文献

2
Characterization of the human Omega class glutathione transferase genes and associated polymorphisms.
Pharmacogenetics. 2003 Mar;13(3):131-44. doi: 10.1097/00008571-200303000-00003.
3
Glutathione S-transferase isoenzymatic response to aging in rat cerebral cortex and cerebellum.
Neurobiol Aging. 2003 May-Jun;24(3):501-9. doi: 10.1016/s0197-4580(02)00139-2.
4
Functional characterization of two variant human GSTO 1-1s (Ala140Asp and Thr217Asn).
Biochem Biophys Res Commun. 2003 Feb 7;301(2):516-20. doi: 10.1016/s0006-291x(02)03066-8.
6
Mu class glutathione S-transferase mRNA isoform expression in acute lymphoblastic leukaemia.
Br J Haematol. 2003 Jan;120(1):80-8. doi: 10.1046/j.1365-2141.2003.04039.x.
7
Detection and characterization of a novel functional polymorphism in the GSTT1 gene.
Pharmacogenetics. 2002 Nov;12(8):613-9. doi: 10.1097/00008571-200211000-00005.
8
Glutathione S-transferase polymorphisms and risk of ovarian cancer: a HuGE review.
Genet Med. 2002 Jul-Aug;4(4):250-7. doi: 10.1097/00125817-200207000-00003.
9
A T2517C polymorphism in the GSTM4 gene is associated with risk of developing lung cancer.
Lung Cancer. 2002 Aug;37(2):143-6. doi: 10.1016/s0169-5002(02)00078-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验