Primiano T, Novak R F
Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan 48201.
Arch Biochem Biophys. 1993 Mar;301(2):404-10. doi: 10.1006/abbi.1993.1163.
Class mu glutathione S-transferases (GSTs) are important in the detoxication of epoxides generated by oxidative metabolism. Phenobarbital, 3-methylcholanthrene, and pyridine have failed to enhance the expression of class mu GST isozymes in rabbit hepatic tissue (T. Primiano, S. G. Kim, and R. F. Novak, Toxicol. Appl. Pharmacol., 113, 64-73, 1992). Two class mu GST isozymes have been isolated from rabbit hepatic cytosol and purified to homogeneity using S-hexylglutathione-agarose, CM-Sepharose, and PBE94 chromatofocusing chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses showed that both isozymes possessed M(r) values of approximately 25,500 and cross-reacted with class mu-specific GST IgG. Gel filtration analysis revealed that these isozymes were dimers with molecular weights of approximately 45 kDa. The class mu GST isozymes had pIs of 7.8 and 7.2 as determined by nonequilibrium pH gel electrophoresis. The class mu GST 7.8 and 7.2 isozymes exhibited different metabolic activities toward the substrates 1-chloro-2,4-dinitrobenzene, bromosulfophthalein, 1,2-epoxy-3-(p-nitrophenoxy)propane, trans-4-phenyl-3-buten-2-one, p-nitrobenzyl chloride, and 3,4-dichloronitrobenzene. Metabolic activity of the two GSTs toward the substrate 1-chloro-2,4-dinitrobenzene was inhibited by Cibacron blue, triethyltin bromide, S-hexylglutathione, bromosulfophthalein, and indomethacin. The amino acid composition of GST mu 7.8 and 7.2 was determined and found to be very similar to those of purified rat class mu GST isozymes. N-terminal analysis of the first 21 residues of the pI 7.8 class mu GST isozyme revealed that it had 71 and 81% sequence identity with the Yb1 and Yb2 subunits, respectively. Similarly, N-terminal analysis of the first 21 residues of the pI 7.2 class mu GST isozyme revealed a 75% sequence identity with either the rat Yb1 or Yb2 subunit. Examination of class mu GST expression in rabbit hepatic cytosol following treatment with a series of known inducers including phenobarbital, 3-methylcholanthrene, isosafrole, pyrazine, trans-stilbene oxide, butylated hydroxyanisole, and tert-butylhydroquinone was accomplished. The data show that these agents not only failed to enhance class mu GST expression, but that 3-methylcholanthrene and isosafrole caused suppression of class mu GSTs. These results provide evidence for the existence of two closely related class mu GST isozymes in rabbit hepatic tissue and suggest that the molecular mechanisms regulating GST expression differ between rat and rabbit in response to these xenobiotics.
μ类谷胱甘肽S-转移酶(GSTs)在氧化代谢产生的环氧化物解毒过程中起着重要作用。苯巴比妥、3-甲基胆蒽和吡啶未能增强兔肝组织中μ类GST同工酶的表达(T. Primiano、S. G. Kim和R. F. Novak,《毒理学与应用药理学》,113卷,64 - 73页,1992年)。已从兔肝细胞溶质中分离出两种μ类GST同工酶,并使用S-己基谷胱甘肽琼脂糖、CM-琼脂糖凝胶和PBE94聚焦层析法将其纯化至同质。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和免疫印迹分析表明,两种同工酶的相对分子质量(M(r))约为25,500,且与μ类特异性GST IgG发生交叉反应。凝胶过滤分析显示,这些同工酶是分子量约为45 kDa的二聚体。通过非平衡pH凝胶电泳测定,μ类GST同工酶的等电点(pI)分别为7.8和7.2。μ类GST 7.8和7.2同工酶对底物1-氯-2,4-二硝基苯、溴磺酞、1,2-环氧-3-(对硝基苯氧基)丙烷、反式-4-苯基-3-丁烯-2-酮、对硝基苄基氯和3,4-二氯硝基苯表现出不同的代谢活性。两种GST对底物1-氯-2,4-二硝基苯的代谢活性受到汽巴蓝、三乙基溴化锡、S-己基谷胱甘肽、溴磺酞和吲哚美辛的抑制。测定了GST μ 7.8和7.2的氨基酸组成,发现其与纯化的大鼠μ类GST同工酶非常相似。对pI 7.8的μ类GST同工酶前21个残基的N端分析表明,它与Yb1和Yb2亚基的序列同一性分别为71%和81%。同样,对pI 7.2的μ类GST同工酶前21个残基的N端分析表明,它与大鼠Yb1或Yb2亚基的序列同一性为75%。在用一系列已知诱导剂(包括苯巴比妥、3-甲基胆蒽、异黄樟素、吡嗪、反式氧化茋、丁基羟基茴香醚和叔丁基对苯二酚)处理后,检测了兔肝细胞溶质中μ类GST的表达。数据表明,这些试剂不仅未能增强μ类GST的表达,而且3-甲基胆蒽和异黄樟素导致μ类GSTs受到抑制。这些结果为兔肝组织中存在两种密切相关的μ类GST同工酶提供了证据,并表明在对这些外源性物质的反应中,大鼠和兔调节GST表达的分子机制不同。