Xia Tianbing, Becker Hans-Christian, Wan Chaozhi, Frankel Adam, Roberts Richard W, Zewail Ahmed H
Laboratory for Molecular Sciences, Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8119-23. doi: 10.1073/pnas.1433099100. Epub 2003 Jun 18.
The N protein from bacteriophage lambda is a key regulator of transcription antitermination. It specifically recognizes a nascent mRNA stem loop termed boxB, enabling RNA polymerase to read through downstream terminators processively. The stacking interaction between Trp-18 of WT N protein and A7 of boxB RNA is crucial for efficient antitermination. Here, we report on the direct probing of the dynamics for this interfacial binding and the correlation of the dynamics with biological functions. Specifically, we examined the influence of structural changes in four peptides on the femtosecond dynamics of boxB RNA (2-aminopurine labeled in different positions), through mutations of critical residues of N peptide (residues 1-22). We then compare their in vivo (Escherichia coli) transcription antitermination activities with the dynamics. The results demonstrate that the RNA-peptide complexes adopt essentially two dynamical conformations with the time scale for interfacial interaction in the two structures being vastly different, 1 ps for the stacked structure and nanosecond for the unstacked one; only the weighted average of the two is detected in NMR by nuclear Overhauser effect experiments. Strikingly, the amplitude of the observed ultrafast dynamics depends on the identity of the amino acid residues that are one helical turn away from Trp-18 in the peptides and is correlated with the level of biological function of their respective full-length proteins.
来自噬菌体λ的N蛋白是转录抗终止的关键调节因子。它特异性识别一种称为boxB的新生mRNA茎环,使RNA聚合酶能够连续通读下游终止子。野生型N蛋白的Trp-18与boxB RNA的A7之间的堆积相互作用对于有效的抗终止至关重要。在此,我们报道了对这种界面结合动力学的直接探测以及动力学与生物学功能的相关性。具体而言,我们通过N肽(第1-22位残基)关键残基的突变,研究了四种肽的结构变化对boxB RNA(在不同位置标记有2-氨基嘌呤)飞秒动力学的影响。然后,我们将它们在体内(大肠杆菌)的转录抗终止活性与动力学进行比较。结果表明,RNA-肽复合物基本上采用两种动力学构象,两种结构中界面相互作用的时间尺度差异很大,堆积结构为1皮秒,未堆积结构为纳秒;在核磁共振中通过核Overhauser效应实验仅检测到两者的加权平均值。令人惊讶的是,观察到的超快动力学的幅度取决于肽中与Trp-18相隔一个螺旋圈的氨基酸残基的身份,并且与它们各自全长蛋白的生物学功能水平相关。