Suppr超能文献

Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance.

作者信息

Alvarez Lawrence J, Turner Helen C, Candia Oscar A, Polikoff Lee A

机构信息

Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.

出版信息

Curr Eye Res. 2003 Feb;26(2):95-105. doi: 10.1076/ceyr.26.2.95.14512.

Abstract

PURPOSE

To characterize the effects of cAMP-elevating stimuli on the rabbit translens electrical parameters and examine the distribution of beta adrenoceptors about the epithelial surface.

METHODS

The electrophysiological experiments encompassed the isolation of lenses within a vertically arranged, Ussing-type chamber under short-circuit conditions, an approach that allowed for measurements of short-circuit current (I(sc)) across, in separate experiments, discrete surface regions. Epithelial beta receptors were localized by immunofluorescent labeling of lens cryosections primarily exposed to a polyclonal antibody against human beta( 2)-adrenoceptors. Reverse transcription - polymerase chain reaction (RT-PCR) was used to generate cDNA (using specific primers based upon the sequence of the previously cloned human beta(2) receptor) from rabbit lens RNA extracted from mechanically sequestered anterior and equatorial epithelial cells.

RESULTS

Asymmetrical I(sc) reductions with increases in translens resistance were elicited with epinephrine, isoproterenol, terbutaline, forskolin, and a lipid-permeable cAMP analogue. Electrical changes were recorded across the anterior aspect and not observed when the above compounds were applied to solutions bathing the equatorial and posterior surfaces. Immunohistochemical observations indicated the expression of beta receptors from the anterior epithelium to the equatorial region. RT-PCR yielded cDNA of expected basepair length for the apparent fragment of the beta(2)-adrenoceptor, which exhibited a sequence homology 90% identical with its human equivalent in both the anterior and equatorial epithelia.

CONCLUSIONS

The cAMP-sensitive conductance(s) appear limited to the anterior epithelium and undetectable equatorially. The asymmetrical I(sc) responses do not seem to arise from a spatial heterogeneity in epithelial receptor expression.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验