Kipriyanov Sergey M, Moldenhauer Gerhard, Braunagel Michael, Reusch Uwe, Cochlovius Björn, Le Gall Fabrice, Kouprianova Olga A, Von der Lieth Claus Wilhelm, Little Melvyn
Recombinant Antibody Research Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
J Mol Biol. 2003 Jun 27;330(1):99-111. doi: 10.1016/s0022-2836(03)00526-6.
Bispecific single-chain Fv antibodies comprise four covalently linked immunoglobulin variable (VH and VL) domains of two different specificities. Depending on the order of the VH and VL domains and on the length of peptides separating them, the single-chain molecule either forms two single-chain Fv (scFv) modules from the adjacent domains of the same specificity, a so-called scFv-scFv tandem [(scFv)(2)], or folds head-to-tail with the formation of a diabody-like structure, a so-called bispecific single-chain diabody (scBsDb). We generated a number of four-domain constructs composed of the same VH and VL domains specific either for human CD19 or CD3, but arranged in different orders. When expressed in bacteria, all (scFv)(2) variants appeared to be only half-functional, binding to CD19 and demonstrating no CD3-binding activity. Only the diabody-like scBsDb could bind both antigens. Comparison of the scBsDb with a structurally similar non-covalent dimer (diabody) demonstrated a stabilizing effect of the linker in the middle of the scBsDb molecule. We demonstrated that the mechanism of inactivation of CD19xCD3 diabody under physiological conditions is initiated by a dissociation of the weaker (anti-CD3) VH/VL interface followed by domain swapping with the formation of non-active homodimers. The instability of one homodimer makes the process of diabody dissociation/reassociation irreversible, thus gradually decreasing the fraction of active molecules. The structural parameters influencing the formation of functional bispecific single-chain antibodies are indicated and ways of making relatively stable bispecific molecules are proposed.
双特异性单链Fv抗体由具有两种不同特异性的四个共价连接的免疫球蛋白可变区(VH和VL)结构域组成。根据VH和VL结构域的顺序以及分隔它们的肽段长度,单链分子要么从相同特异性的相邻结构域形成两个单链Fv(scFv)模块,即所谓的scFv-scFv串联体[(scFv)(2)],要么头对尾折叠形成类似双体的结构,即所谓的双特异性单链双体(scBsDb)。我们构建了许多由针对人CD19或CD3的相同VH和VL结构域组成的四结构域构建体,但它们的排列顺序不同。当在细菌中表达时,所有(scFv)(2)变体似乎只有一半功能,能结合CD19但无CD3结合活性。只有类似双体的scBsDb能结合两种抗原。将scBsDb与结构相似的非共价二聚体(双体)进行比较,结果表明scBsDb分子中间的连接子具有稳定作用。我们证明,在生理条件下,CD19xCD3双体失活的机制是由较弱的(抗CD3)VH/VL界面解离引发,随后发生结构域交换并形成无活性的同型二聚体。一个同型二聚体的不稳定性使得双体解离/重新结合的过程不可逆,从而逐渐降低活性分子的比例。文中指出了影响功能性双特异性单链抗体形成的结构参数,并提出了制备相对稳定的双特异性分子的方法。