Karahalil Bensu, de Souza-Pinto Nadja C, Parsons Jason L, Elder Rhoderick H, Bohr Vilhelm A
Laboratory of Molecular Gerontology, National Institute on Aging,, National Institutes of Health, Baltimore, Maryland 21224, USA.
J Biol Chem. 2003 Sep 5;278(36):33701-7. doi: 10.1074/jbc.M301617200. Epub 2003 Jun 22.
Mitochondrial DNA is constantly exposed to high levels of endogenously produced reactive oxygen species, resulting in elevated levels of oxidative damaged DNA bases. A large spectrum of DNA base alterations can be detected after oxidative stress, and many of these are highly mutagenic. Thus, an efficient repair of these is necessary for survival. Some of the DNA repair pathways involved have been characterized, but others are not yet determined. A DNA repair activity for thymine glycol and other oxidized pyrimidines has been described in mammalian mitochondria, but the nature of the glycosylases involved in this pathway remains unclear. The generation of mouse strains lacking murine thymine glycol-DNA glycosylase (mNTH1) and/or murine 8-oxoguanine-DNA glycosylase (mOGG1), the two major DNA N-glycosylase/apurinic/apyrimidinic (AP) lyases involved in the repair of oxidative base damage in the nucleus, has provided very useful biological model systems for the study of the function of these and other glycosylases in mitochondrial DNA repair. In this study, mouse liver mitochondrial extracts were generated from mNTH1-, mOGG1-, and [mNTH1, mOGG1]-deficient mice to ascertain the role of each of these glycosylases in the repair of oxidized pyrimidine base damage. We also characterized for the first time the incision of various modified bases in mitochondrial extracts from a double-knock-out [mNTH1, mOGG1]-deficient mouse. We show that mNTH1 is responsible for the repair of thymine glycols in mitochondrial DNA, whereas other glycosylase/AP lyases also participate in removing other oxidized pyrimidines, such as 5-hydroxycytosine and 5-hydroxyuracil. We did not detect a backup glycosylase or glycosylase/AP lyase activity for thymine glycol in the mitochondrial mouse extracts.
线粒体DNA不断暴露于内源性产生的高水平活性氧中,导致氧化损伤的DNA碱基水平升高。氧化应激后可检测到大量的DNA碱基改变,其中许多具有高度致突变性。因此,对这些损伤进行有效修复是生存所必需的。一些参与的DNA修复途径已得到表征,但其他途径尚未确定。哺乳动物线粒体中已描述了针对胸腺嘧啶乙二醇和其他氧化嘧啶的DNA修复活性,但该途径中涉及的糖基化酶的性质仍不清楚。缺乏小鼠胸腺嘧啶乙二醇-DNA糖基化酶(mNTH1)和/或小鼠8-氧代鸟嘌呤-DNA糖基化酶(mOGG1)的小鼠品系的产生,这两种主要的DNA N-糖基化酶/脱嘌呤/脱嘧啶(AP)裂解酶参与细胞核中氧化碱基损伤的修复,为研究这些和其他糖基化酶在线粒体DNA修复中的功能提供了非常有用的生物学模型系统。在本研究中,从小鼠肝脏线粒体提取物中提取了mNTH1、mOGG1和[mNTH1,mOGG1]缺陷型小鼠,以确定每种糖基化酶在氧化嘧啶碱基损伤修复中的作用。我们还首次对双敲除[mNTH1,mOGG1]缺陷型小鼠线粒体提取物中各种修饰碱基的切割进行了表征。我们表明,mNTH1负责线粒体DNA中胸腺嘧啶乙二醇的修复,而其他糖基化酶/AP裂解酶也参与去除其他氧化嘧啶,如5-羟基胞嘧啶和5-羟基尿嘧啶。我们在小鼠线粒体提取物中未检测到胸腺嘧啶乙二醇的备用糖基化酶或糖基化酶/AP裂解酶活性。