Borges Karin, Gearing Marla, McDermott Dayna L, Smith Amy B, Almonte Antoine G, Wainer Bruce H, Dingledine Raymond
Department of PharmacologyEmory University, Atlanta, GA 30322, USA.
Exp Neurol. 2003 Jul;182(1):21-34. doi: 10.1016/s0014-4886(03)00086-4.
The rodent pilocarpine model of epilepsy exhibits hippocampal sclerosis and spontaneous seizures and thus resembles human temporal lobe epilepsy. Use of the many available mouse mutants to study this epilepsy model would benefit from a detailed neuropathology study. To identify new features of epileptogenesis, we characterized glial and neuronal pathologies after pilocarpine-induced status epilepticus (SE) in CF1 and C57BL/6 mice focusing on the hippocampus. All CF1 mice showed spontaneous seizures by 17-27 days after SE. By 6 h there was virtually complete loss of hilar neurons, but the extent of pyramidal cell death varied considerably among mice. In the mossy fiber pathway, neuropeptide Y (NPY) was persistently upregulated beginning 1 day after SE; NPY immunoreactivity in the supragranular layer after 31 days indicated mossy fiber sprouting. beta2 microglobulin-positive activated microglia, normally absent in brains without SE, became abundant over 3-31 days in regions of neuronal loss, including the hippocampus and the amygdala. Astrogliosis developed after 10 days in damaged areas. Amyloid precursor protein immunoreactivity in the thalamus at 10 days suggested delayed axonal degeneration. The mortality after pilocarpine injection was very high in C57BL/6 mice from Jackson Laboratories but not those from Charles River, suggesting that mutant mice in the C57BL/6(JAX) strain will be difficult to study in the pilocarpine model, although their neuropathology was similar to CF1 mice. Major neuropathological changes not previously studied in the rodent pilocarpine model include widespread microglial activation, delayed thalamic axonal death, and persistent NPY upregulation in mossy fibers, together revealing extensive and persistent glial as well as neuronal pathology.
啮齿动物匹鲁卡品癫痫模型表现出海马硬化和自发性癫痫发作,因此类似于人类颞叶癫痫。利用众多现有的小鼠突变体来研究这个癫痫模型将受益于详细的神经病理学研究。为了确定癫痫发生的新特征,我们对CF1和C57BL/6小鼠匹鲁卡品诱导的癫痫持续状态(SE)后的胶质细胞和神经元病变进行了特征分析,重点关注海马体。所有CF1小鼠在SE后17 - 27天出现自发性癫痫发作。到6小时时,门区神经元几乎完全丧失,但锥体细胞死亡的程度在小鼠之间差异很大。在苔藓纤维通路中,神经肽Y(NPY)在SE后1天开始持续上调;31天后颗粒上层的NPY免疫反应性表明苔藓纤维发芽。β2微球蛋白阳性的活化小胶质细胞,在没有SE的大脑中通常不存在,在3 - 31天内在包括海马体和杏仁核在内的神经元丢失区域大量出现。损伤区域在10天后出现星形胶质细胞增生。10天时丘脑的淀粉样前体蛋白免疫反应性表明轴突变性延迟。来自杰克逊实验室的C57BL/6小鼠注射匹鲁卡品后的死亡率非常高,但来自查尔斯河实验室的小鼠则不然,这表明C57BL/6(JAX)品系的突变小鼠在匹鲁卡品模型中难以研究,尽管它们的神经病理学与CF1小鼠相似。啮齿动物匹鲁卡品模型中以前未研究过的主要神经病理学变化包括广泛的小胶质细胞活化、延迟性丘脑轴突死亡以及苔藓纤维中NPY的持续上调,共同揭示了广泛而持续的胶质细胞以及神经元病变。