Xie Ke, Royer Jessica, Rodriguez-Cruces Raul, Horwood Linda, Ngo Alexander, Arafat Thaera, Auer Hans, Sahlas Ella, Chen Judy, Zhou Yigu, Valk Sofie L, Hong Seok-Jun, Frauscher Birgit, Pana Raluca, Bernasconi Andrea, Bernasconi Neda, Concha Luis, Bernhardt Boris C
McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.
Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
Adv Sci (Weinh). 2025 Mar;12(9):e2406835. doi: 10.1002/advs.202406835. Epub 2025 Jan 13.
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models. A broad decrease in the Hurst exponent is observed in pharmaco-resistant temporal lobe epilepsy (TLE), suggesting more excitable network dynamics. Connectome decoders point to temporolimbic and frontocentral cortices as plausible network epicenters of E/I imbalance. Furthermore, computational simulations reveal that enhancing cortical excitability in TLE reflects atypical increases in recurrent connection strength of local neuronal ensembles. Mixed cross-sectional and longitudinal analyses show stronger E/I ratio elevation in patients with longer disease duration, more frequent electroclinical seizures as well as interictal epileptic spikes, and worse cognitive functioning. Hurst exponent-informed classifiers discriminate patients from healthy controls with high accuracy (72.4% [57.5%-82.5%]). Replicated in an independent dataset, this work provides in vivo evidence of a macroscale shift in E/I balance in TLE patients and points to progressive functional imbalances that relate to cognitive decline.
兴奋-抑制(E/I)失衡被认为是癫痫病理生理学中的关键机制,大量研究致力于阐明其细胞层面的表现。然而,很少有研究在宏观、全脑水平上探究E/I失衡,其微回路水平的机制和临床意义仍未完全明晰。在此,从静息态功能磁共振成像(fMRI)时间序列计算出E/I比值的指标——赫斯特指数,并使用生物物理模型模拟微回路参数。在药物难治性颞叶癫痫(TLE)中观察到赫斯特指数普遍下降,表明网络动力学更易兴奋。连接组解码器指出颞叶边缘和额中央皮质可能是E/I失衡的网络中心。此外,计算模拟显示,增强TLE中的皮质兴奋性反映了局部神经元集群递归连接强度的异常增加。混合横断面和纵向分析表明,病程较长、电临床发作更频繁以及有发作间期癫痫样放电的患者,其E/I比值升高更明显,认知功能也更差。基于赫斯特指数的分类器能以较高准确率(72.4%[57.5%-82.5%])区分患者与健康对照。该研究在独立数据集中得到重复验证,为TLE患者E/I平衡的宏观转变提供了体内证据,并指出了与认知衰退相关的渐进性功能失衡。