Meloni Simone, Palma Amedeo, Schwartz Jeffrey, Kahn Antoine, Car Roberto
CASPUR, SuperComputing Consortium, c/o University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy.
J Am Chem Soc. 2003 Jul 2;125(26):7808-9. doi: 10.1021/ja029090t.
Metal organic contacts are at the basis of devices such as organic light emitting diodes (OLEDs). Here, we report a theoretical investigation of the chemical interaction between a Mg atom and an organic film made of tris(8-hydroxyquinoline)aluminum (Alq3) molecules. The latter is modeled either by an isolated molecule or by a bulk crystal. Using first-principles molecular dynamics for structural optimization, we find that an isolated Alq3 molecule and a Mg atom form an ion-pair. However, when the metal atom interacts with molecules in a bulk crystalline environment, we find that an organometallic complex is energetically preferred over the ion-pair. The complex formation is an effect of the environment which makes possible the interaction of the metal atom with several adjacent molecules. Here, our calculated O(1s) and N(1s) core level shifts agree well with recent experimental data on Alq3 films exposed to Mg. Our results resolve the apparent contradiction between experiment and predictions made in previous calculations in which a single Alq3 molecule was used to model a thin film.
金属有机接触是诸如有机发光二极管(OLED)等器件的基础。在此,我们报告了对镁原子与由三(8 - 羟基喹啉)铝(Alq3)分子构成的有机薄膜之间化学相互作用的理论研究。后者要么由孤立分子建模,要么由体相晶体建模。使用第一性原理分子动力学进行结构优化,我们发现一个孤立的Alq3分子和一个镁原子形成一个离子对。然而,当金属原子在体相晶体环境中与分子相互作用时,我们发现有机金属配合物在能量上比离子对更有利。配合物的形成是环境的一种效应,它使得金属原子能够与几个相邻分子相互作用。在此,我们计算得到的O(1s)和N(1s)芯能级位移与最近关于暴露于镁的Alq3薄膜的实验数据吻合良好。我们的结果解决了实验与先前计算中使用单个Alq3分子对薄膜进行建模所做预测之间明显的矛盾。