Chang Geoffrey
Department of Molecular Biology, CB-105, The Scripps Research Institute, La Jolla, CA 92037, USA.
J Mol Biol. 2003 Jul 4;330(2):419-30. doi: 10.1016/s0022-2836(03)00587-4.
The spread of multidrug resistance (MDR) is a world health crisis that presents a significant challenge to the treatment of cancer and infection. MDR can be caused by a group of ABC (MDR-ABC) transporters that move hydrophobic drug molecules and lipids across the cell membrane. To gain insight into the conformational changes these transporters undergo when flipping hydrophobic substrates across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Vibrio cholera (VC-MsbA) to 3.8A. Structural comparison of VC-MsbA to MsbA from Escherichia coli reveals that the transporters share a structurally conserved core of transmembrane alpha-helices, but differ in the relative orientations of their nucleotide-binding domains (NBD). The transmembrane domain of VC-MsbA is captured in a closed conformation and the structure supports a "power stroke" model of transporter dynamics where opposing NBDs associate upon ATP binding. The separation of the alpha and beta domains of the NBD suggests the possibility that their association could make them competent to bind ATP and gives further insight into the structural basis for catalytic regulation.
多重耐药性(MDR)的传播是一场全球健康危机,对癌症和感染的治疗构成了重大挑战。MDR可能由一组ABC(MDR-ABC)转运蛋白引起,这些转运蛋白可将疏水性药物分子和脂质转运穿过细胞膜。为了深入了解这些转运蛋白在将疏水性底物翻转穿过脂质双层时所经历的构象变化,我们已确定霍乱弧菌脂质翻转酶MsbA(VC-MsbA)的结构,分辨率达到3.8埃。将VC-MsbA与大肠杆菌的MsbA进行结构比较发现,这些转运蛋白共享一个结构保守的跨膜α-螺旋核心,但它们核苷酸结合结构域(NBD)的相对取向有所不同。VC-MsbA的跨膜结构域以封闭构象被捕获,该结构支持一种转运蛋白动力学的“动力冲程”模型,即相反的NBD在ATP结合时会结合在一起。NBD的α和β结构域的分离表明它们结合在一起可能使其有能力结合ATP,这进一步深入了解了催化调节的结构基础。