Suppr超能文献

带有高亲和力标签的融合蛋白的晶体结构。

Crystal structures of fusion proteins with large-affinity tags.

作者信息

Smyth Douglas R, Mrozkiewicz Marek K, McGrath William J, Listwan Pawel, Kobe Bostjan

机构信息

Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics, University of Queensland, St Lucia, Queensland 4072, Australia.

出版信息

Protein Sci. 2003 Jul;12(7):1313-22. doi: 10.1110/ps.0243403.

Abstract

The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.

摘要

将目标蛋白与大亲和力标签(如麦芽糖结合蛋白(MBP)、硫氧还蛋白(TRX)或谷胱甘肽-S-转移酶(GST))融合,在增加表达、提高溶解度、防止蛋白水解、改善折叠以及通过亲和层析进行蛋白纯化等方面可能具有优势。不幸的是,融合标签诱导的构象异质性会阻碍晶体生长,这就需要通过一个可能存在问题的切割步骤去除标签。最近报道了具有大亲和力标签的融合蛋白的前三个晶体结构。所有这三个结构都采用了一种新颖的策略,即通过一个由三到五个氨基酸组成的短间隔区将目标蛋白与MBP刚性融合。这种策略有可能帮助确定那些存在特殊实验挑战且不利于采用更传统结晶策略(如膜蛋白)的蛋白质的结构。结构基因组学计划也可能从这种方法中受益,作为一种使具有重大研究价值的难结晶蛋白结晶的途径。

相似文献

1
Crystal structures of fusion proteins with large-affinity tags.
Protein Sci. 2003 Jul;12(7):1313-22. doi: 10.1110/ps.0243403.
2
Tagging recombinant proteins to enhance solubility and aid purification.
Methods Mol Biol. 2011;681:151-75. doi: 10.1007/978-1-60761-913-0_9.
3
Unveiling success determinants for AMB-assisted phase expansion of fusion proteins in ARP/wARP.
J Struct Biol. 2024 Jun;216(2):108089. doi: 10.1016/j.jsb.2024.108089. Epub 2024 Mar 26.
4
Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins.
J Struct Funct Genomics. 2002;2(2):83-92. doi: 10.1023/a:1020424023207.
5
Induced fit of passenger proteins fused to Archaea maltose binding proteins.
Biochem Biophys Res Commun. 2006 May 26;344(1):25-9. doi: 10.1016/j.bbrc.2006.03.151. Epub 2006 Mar 31.
7
Protein purification with C-terminal fusion of maltose binding protein.
Protein Expr Purif. 1998 Dec;14(3):367-70. doi: 10.1006/prep.1998.0969.
9
Use of dual affinity tags for expression and purification of functional peripheral cannabinoid receptor.
Protein Expr Purif. 2007 May;53(1):153-63. doi: 10.1016/j.pep.2006.12.003. Epub 2006 Dec 12.
10
Strategy for purifying maltose binding protein fusion proteins by affinity precipitation.
J Chromatogr A. 2008 Jun 13;1194(1):90-5. doi: 10.1016/j.chroma.2008.04.029. Epub 2008 Apr 20.

引用本文的文献

2
In Silico Analysis of s-DAPK-1: From Structure to Function and Regulation.
Curr Issues Mol Biol. 2025 Jun 4;47(6):416. doi: 10.3390/cimb47060416.
3
Preparing for successful protein crystallization experiments.
Acta Crystallogr F Struct Biol Commun. 2025 Jul 1;81(Pt 7):272-280. doi: 10.1107/S2053230X25004650. Epub 2025 Jun 2.
4
Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system.
Curr Res Struct Biol. 2024 Jul 14;8:100156. doi: 10.1016/j.crstbi.2024.100156. eCollection 2024.
6
Tagging Recombinant Proteins to Enhance Solubility and Aid Purification.
Methods Mol Biol. 2023;2699:97-123. doi: 10.1007/978-1-0716-3362-5_7.
7
Knotting terminal ends of mutant T1 lipase with disulfide bond improved structure rigidity and stability.
Appl Microbiol Biotechnol. 2023 Mar;107(5-6):1673-1686. doi: 10.1007/s00253-023-12396-5. Epub 2023 Feb 8.
8
Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production.
Methods Mol Biol. 2022;2406:35-64. doi: 10.1007/978-1-0716-1859-2_2.
10
Substrate Channeling by a Rationally Designed Fusion Protein in a Biocatalytic Cascade.
JACS Au. 2021 Jul 1;1(8):1187-1197. doi: 10.1021/jacsau.1c00180. eCollection 2021 Aug 23.

本文引用的文献

1
Characterization and prediction of linker sequences of multi-domain proteins by a neural network.
J Struct Funct Genomics. 2002;2(1):37-51. doi: 10.1023/a:1014418700858.
2
Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins.
J Struct Funct Genomics. 2002;2(2):83-92. doi: 10.1023/a:1020424023207.
4
Rapid protein domain assignment from amino acid sequence using predicted secondary structure.
Protein Sci. 2002 Dec;11(12):2814-24. doi: 10.1110/ps.0209902.
5
Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
J Mol Biol. 2002 Sep 13;322(2):425-40. doi: 10.1016/s0022-2836(02)00739-8.
6
Crystallisation of membrane proteins mediated by antibody fragments.
Curr Opin Struct Biol. 2002 Aug;12(4):503-8. doi: 10.1016/s0959-440x(02)00354-8.
7
Employing Escherichia coli to functionally express, purify, and characterize a human transporter.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8597-601. doi: 10.1073/pnas.132266599. Epub 2002 Jun 19.
9
High-throughput screening of soluble recombinant proteins.
Protein Sci. 2002 Jul;11(7):1714-9. doi: 10.1110/ps.0205202.
10
Proteome-scale purification of human proteins from bacteria.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2654-9. doi: 10.1073/pnas.042684199.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验