Celej María Soledad, Montich Guillermo G, Fidelio Gerardo D
Centro de Investigaciones en Química Biológica de Córdoba-CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000 Córdoba, Argentina.
Protein Sci. 2003 Jul;12(7):1496-506. doi: 10.1110/ps.0240003.
The interaction between ligands and proteins usually induces changes in protein thermal stability with modifications in the midpoint denaturation temperature, enthalpy of unfolding, and heat capacity. These modifications are due to the coupling of unfolding with binding equilibrium. Furthermore, they can be attained by changes in protein structure and conformational flexibility induced by ligand interaction. To study these effects we have used bovine serum albumin (BSA) interacting with three different anilinonaphthalene sulfonate derivatives (ANS). These ligands have different effects on protein stability, conformation, and dynamics. Protein stability was studied by differential scanning calorimetry and fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism and infrared spectroscopy including kinetics of hydrogen/deuterium exchange. The order of calorimetric midpoint of denaturation was: 1,8-ANS-BSA > 2,6-ANS-BSA > free BSA >> (nondetected) bis-ANS-BSA. Both 1,8-ANS and 2,6-ANS did not substantially modify the secondary structure of BSA, whereas bis-ANS induced a distorted alpha-helix conformation with an increase of disordered structure. Protein flexibility followed the order: 1,8-ANS-BSA < 2,6-ANS-BSA < free BSA << bis-ANS-BSA, indicating a clear correlation between stability and conformational flexibility. The structure induced by an excess of bis-ANS to BSA is compatible with a molten globule-like state. Within the context of the binding landscape model, we have distinguished five conformers (identified by subscript): BSA(1,8-ANS), BSA(2,6-ANS), BSA(free), BSA(bis-ANS), and BSA(unfolded) among the large number of possible states of the conformational dynamic ensemble. The relative population of each distinguishable conformer depends on the type and concentration of ligand and the temperature of the system.
配体与蛋白质之间的相互作用通常会引起蛋白质热稳定性的变化,表现为变性中点温度、解折叠焓和热容的改变。这些变化是由于解折叠与结合平衡的耦合所致。此外,它们还可通过配体相互作用引起的蛋白质结构和构象灵活性的改变来实现。为了研究这些效应,我们使用了牛血清白蛋白(BSA)与三种不同的苯胺萘磺酸盐衍生物(ANS)相互作用。这些配体对蛋白质的稳定性、构象和动力学具有不同的影响。通过差示扫描量热法和荧光光谱研究蛋白质稳定性,而通过圆二色性和红外光谱(包括氢/氘交换动力学)检测构象变化。变性的量热中点顺序为:1,8-ANS-BSA > 2,6-ANS-BSA > 游离BSA >> (未检测到)双ANS-BSA。1,8-ANS和2,6-ANS均未显著改变BSA的二级结构,而双ANS诱导了扭曲的α-螺旋构象,无序结构增加。蛋白质灵活性的顺序为:1,8-ANS-BSA < 2,6-ANS-BSA < 游离BSA << 双ANS-BSA,表明稳定性与构象灵活性之间存在明显的相关性。过量双ANS诱导的BSA结构与类熔球状态相容。在结合景观模型的背景下,我们在构象动态集合的大量可能状态中区分出了五种构象体(用下标标识):BSA(1,8-ANS)、BSA(2,6-ANS)、BSA(游离)、BSA(双ANS)和BSA(解折叠)。每个可区分构象体的相对丰度取决于配体的类型和浓度以及系统温度。