Suppr超能文献

共聚焦荧光共振能量转移显微镜用于测量内吞细胞膜中配体-受体复合物的聚集情况。

Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes.

作者信息

Wallrabe Horst, Elangovan Masilamani, Burchard Almut, Periasamy Ammasi, Barroso Margarida

机构信息

Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA.

出版信息

Biophys J. 2003 Jul;85(1):559-71. doi: 10.1016/S0006-3495(03)74500-7.

Abstract

The dynamics of protein distribution in endocytic membranes are relevant for many cellular processes, such as protein sorting, organelle and membrane microdomain biogenesis, protein-protein interactions, receptor function, and signal transduction. We have developed an assay based on Fluorescence Resonance Energy Microscopy (FRET) and novel mathematical models to differentiate between clustered and random distributions of fluorophore-bound molecules on the basis of the dependence of FRET intensity on donor and acceptor concentrations. The models are tailored to extended clusters, which may be tightly packed, and account for geometric exclusion effects between membrane-bound proteins. Two main criteria are used to show that labeled polymeric IgA-ligand-receptor complexes are organized in clusters within apical endocytic membranes of polarized MDCK cells: 1), energy transfer efficiency (E%) levels are independent of acceptor levels; and 2), with increasing unquenched donor: acceptor ratio, E% decreases. A quantitative analysis of cluster density indicates that a donor-labeled ligand-receptor complex should have 2.5-3 labeled complexes in its immediate neighborhood and that clustering may occur at a limited number of discrete membrane locations and/or require a specific protein that can be saturated. Here, we present a new sensitive FRET-based method to quantify the co-localization and distribution of ligand-receptor complexes in apical endocytic membranes of polarized cells.

摘要

内吞膜中蛋白质分布的动态变化与许多细胞过程相关,如蛋白质分选、细胞器和膜微区的生物发生、蛋白质 - 蛋白质相互作用、受体功能以及信号转导。我们基于荧光共振能量显微镜(FRET)开发了一种检测方法,并建立了新的数学模型,以根据FRET强度对供体和受体浓度的依赖性来区分荧光团结合分子的聚集分布和随机分布。这些模型适用于可能紧密堆积的扩展簇,并考虑了膜结合蛋白之间的几何排斥效应。使用两个主要标准来表明标记的聚合IgA - 配体 - 受体复合物在极化的MDCK细胞顶端内吞膜内以簇的形式组织:1)能量转移效率(E%)水平与受体水平无关;2)随着未淬灭的供体:受体比例增加,E%降低。对簇密度的定量分析表明,供体标记的配体 - 受体复合物在其紧邻区域应具有2.5 - 3个标记复合物,并且簇集可能发生在有限数量的离散膜位置和/或需要一种可以饱和的特定蛋白质。在这里,我们提出了一种基于FRET的新的灵敏方法,用于量化极化细胞顶端内吞膜中配体 - 受体复合物的共定位和分布。

相似文献

1
Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes.
Biophys J. 2003 Jul;85(1):559-71. doi: 10.1016/S0006-3495(03)74500-7.
3
Issues in confocal microscopy for quantitative FRET analysis.
Microsc Res Tech. 2006 Mar;69(3):196-206. doi: 10.1002/jemt.20281.
4
Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations.
Mol Biol Cell. 2007 Jun;18(6):2226-43. doi: 10.1091/mbc.e06-08-0700. Epub 2007 Apr 4.
5
Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
Biochim Biophys Acta Gen Subj. 2018 Apr;1862(4):1050-1068. doi: 10.1016/j.bbagen.2017.12.013. Epub 2017 Dec 30.
6
Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy.
Methods Cell Biol. 2008;89:569-98. doi: 10.1016/S0091-679X(08)00622-5.
8
Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy.
Methods Enzymol. 2012;505:291-327. doi: 10.1016/B978-0-12-388448-0.00024-3.

引用本文的文献

1
In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET.
Biophys Rep (N Y). 2023 May 9;3(2):100110. doi: 10.1016/j.bpr.2023.100110. eCollection 2023 Jun 14.
2
quantitative FRET small animal imaging: intensity versus lifetime-based FRET.
bioRxiv. 2023 Apr 22:2023.01.24.525411. doi: 10.1101/2023.01.24.525411.
3
Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement.
Methods Mol Biol. 2022;2394:837-856. doi: 10.1007/978-1-0716-1811-0_44.
4
MOP and NOP receptor interaction: Studies with a dual expression system and bivalent peptide ligands.
PLoS One. 2022 Jan 21;17(1):e0260880. doi: 10.1371/journal.pone.0260880. eCollection 2022.
6
Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor.
Theranostics. 2020 Aug 15;10(22):10309-10325. doi: 10.7150/thno.45825. eCollection 2020.
8
Association of microtubules and axonal RNA transferred from myelinating Schwann cells in rat sciatic nerve.
PLoS One. 2020 May 29;15(5):e0233651. doi: 10.1371/journal.pone.0233651. eCollection 2020.
9
Nociceptin/Orphanin FQ (N/OFQ) conjugated to ATTO594: a novel fluorescent probe for the N/OFQ (NOP) receptor.
Br J Pharmacol. 2018 Dec;175(24):4496-4506. doi: 10.1111/bph.14504. Epub 2018 Nov 6.
10
TOWARD BAYESIAN INFERENCE OF THE SPATIAL DISTRIBUTION OF PROTEINS FROM THREE-CUBE FÖRSTER RESONANCE ENERGY TRANSFER DATA.
Ann Appl Stat. 2017 Sep;11(3):1711-1737. doi: 10.1214/17-AOAS1054. Epub 2017 Oct 5.

本文引用的文献

2
Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.
Science. 2002 May 3;296(5569):913-6. doi: 10.1126/science.1068539.
4
Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes.
Biophys J. 2001 Oct;81(4):2395-402. doi: 10.1016/S0006-3495(01)75886-9.
6
Microdomains, lipid rafts and caveolae (San Feliu de Guixols, Spain, 19-24 May 2001).
Traffic. 2001 Sep;2(9):668-72. doi: 10.1034/j.1600-0854.2001.20909.x.
7
Emerging themes in lipid rafts and caveolae.
Cell. 2001 Aug 24;106(4):403-11. doi: 10.1016/s0092-8674(01)00472-x.
8
Implications of lipid microdomains for membrane curvature, budding and fission.
Curr Opin Cell Biol. 2001 Aug;13(4):478-84. doi: 10.1016/s0955-0674(00)00239-8.
9
Roles of lipid rafts in membrane transport.
Curr Opin Cell Biol. 2001 Aug;13(4):470-7. doi: 10.1016/s0955-0674(00)00238-6.
10
Vesicle trafficking and cell surface membrane patchiness.
Biophys J. 2001 Jul;81(1):196-203. doi: 10.1016/S0006-3495(01)75691-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验