Suppr超能文献

Glucogenic blood sugar formation in an insect Manduca sexta L.: asymmetric synthesis of trehalose from 13C enriched pyruvate.

作者信息

Thompson S N, Borchardt D B

机构信息

Analytical Chemistry Instrumentation Facility and Department of Entomology, University of California, 3401 Watkins Drive, 92521, Riverside, CA, USA.

出版信息

Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):461-71. doi: 10.1016/s1096-4959(03)00110-6.

Abstract

Gluconeogenesis and blood sugar formation were examined in Manduca sexta, fed carbohydrate- and fat-free diets with varying levels of casein. De novo carbohydrate synthesis was examined by nuclear magnetic resonance spectroscopy of the 13C enrichment in blood trehalose and alanine derived from (2-(13)C)pyruvate and (2,3-(13)C(2))pyruvate administered to 5th instar larvae. Gluconeogenic flux and blood trehalose concentration were positively correlated with protein consumption. On all diets, the 13C distribution in trehalose was asymmetric, with C6 more highly enriched than C1. The C6/C1 13C enrichment ratio, however, decreased with increased protein consumption and gluconeogenic flux. Although the asymmetric 13C enrichment pattern in trehalose is consistent with pentose cycling via the pentose phosphate pathway following de novo synthesis, experiments employing [2,3-(13)C(2)]pyruvate demonstrated that pentose cycling is not detected in insects under these nutritional conditions. Analysis of the multiplet NMR signal structure in trehalose due to spin-spin coupling between adjacent 13C enriched carbons showed the absence of uncoupling expected by pentose phosphate pathway activity. Here we suggest that the asymmetric 13C distribution in trehalose results from a disequilibrium of the triose phosphate isomerase-catalyzed reaction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验