Inai Yoshihito, Ousaka Naoki, Okabe Takahiro
Department of Environmental Technology and Urban Planning, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
J Am Chem Soc. 2003 Jul 9;125(27):8151-62. doi: 10.1021/ja035040s.
Recently, novel chiral interactions on 3(10)-helical peptides, of which the helicity is controlled by external chiral stimulus operating on the N-terminus, were proposed as a "noncovalent chiral domino effect (NCDE)" (Inai, Y.; et al. J. Am. Chem. Soc. 2000, 122, 11731. Inai, Y.; et al. J. Am. Chem. Soc. 2002, 124, 2466). The present study clarifies the mechanism for generating the NCDE. For this purpose, achiral nonapeptide (1), H-beta-Ala-(Delta(Z)Phe-Aib)(4)-OMe [Delta(Z)Phe = (Z)-didehydrophenylalanine, Aib = alpha-aminoisobutyric acid], was synthesized. Peptide 1 alone adopts a 3(10)-helical conformation in chloroform. On the basis of the induced CD signals of peptide 1 with chiral additives, chiral acid enabling the predominant formation of a one-handed helix was shown to need at least both carboxyl and urethane groups; that is, Boc-l-amino acid (Boc = tert-butoxycarbonyl) strongly induces a right-handed helix. NMR studies (NH resonance variations, low-temperature measurement, and NOESY) were performed for a CDCl(3) solution of peptide 1 and chiral additive, supporting the view that the N-terminal H-beta-Ala-Delta(Z)Phe-Aib, including the two free amide NH's, captures effectively a Boc-amino acid molecule through three-point interactions. The H-beta-Ala's amino group binds to the carboxyl group to form a salt bridge, while the Aib(3) NH is hydrogen-bonded to either oxygen of the carboxylate group. Subsequently, the free Delta(Z)Phe(2) NH forms a hydrogen bond to the urethane carbonyl oxygen. A semiempirical molecular orbital computation explicitly demonstrated that the dynamic looping complexation is energetically permitted and that the N-terminal segment of a right-handed 3(10)-helix binds more favorably to a Boc-l-amino acid than to the corresponding d-species. In conclusion, the N-terminal segment of a 3(10)-helix, ubiquitous in natural proteins and peptides, possesses the potency of chiral recognition in the backbone itself, furthermore enabling the conversion of the terminally acquired chiral sign and power into a dynamic control of the original helicity and helical stability.
最近,有人提出在3(10)-螺旋肽上存在新型手性相互作用,其螺旋性由作用于N端的外部手性刺激控制,这被称为“非共价手性多米诺效应(NCDE)”(稻井洋;等人,《美国化学会志》2000年,122卷,11731页。稻井洋;等人,《美国化学会志》2002年,124卷,2466页)。本研究阐明了产生NCDE的机制。为此,合成了非手性九肽(1),H-β-丙氨酸-(Δ(Z)苯丙氨酸-氨基异丁酸)4-甲酯[Δ(Z)苯丙氨酸=(Z)-二脱氢苯丙氨酸,氨基异丁酸=α-氨基异丁酸]。单独的肽1在氯仿中采用3(10)-螺旋构象。基于肽1与手性添加剂的诱导圆二色信号,表明能使单手螺旋优先形成的手性酸至少需要羧基和氨基甲酸酯基团;也就是说,Boc-L-氨基酸(Boc =叔丁氧羰基)强烈诱导右手螺旋。对肽1和手性添加剂的CDCl3溶液进行了核磁共振研究(NH共振变化、低温测量和核Overhauser效应光谱法),支持了这样的观点,即包括两个游离酰胺NH的N端H-β-丙氨酸-Δ(Z)苯丙氨酸-氨基异丁酸通过三点相互作用有效地捕获了一个Boc-氨基酸分子。H-β-丙氨酸的氨基与羧基结合形成盐桥,而氨基异丁酸3的NH与羧酸根基团的任何一个氧形成氢键。随后,游离的Δ(Z)苯丙氨酸2的NH与氨基甲酸酯羰基氧形成氢键。半经验分子轨道计算明确表明,动态环化络合在能量上是允许的,并且右手3(10)-螺旋的N端片段与Boc-L-氨基酸的结合比与相应的d-型更有利。总之,3(10)-螺旋的N端片段在天然蛋白质和肽中普遍存在,在主链本身具有手性识别能力,此外还能将末端获得的手性信号和能力转化为对原始螺旋性和螺旋稳定性的动态控制。