Suppr超能文献

豚鼠下丘对虚拟声音的空间调谐

Spatial tuning to virtual sounds in the inferior colliculus of the guinea pig.

作者信息

Sterbing Susanne J, Hartung Klaus, Hoffmann Klaus-Peter

机构信息

Department of Zoology and Neurobiology, Ruhr University, Bochum 44780, Germany.

出版信息

J Neurophysiol. 2003 Oct;90(4):2648-59. doi: 10.1152/jn.00348.2003. Epub 2003 Jul 2.

Abstract

How do neurons in the inferior colliculus (IC) encode the spatial location of sound? We have addressed this question using a virtual auditory environment. For this purpose, the individual head-related transfer functions (HRTFs) of 18 guinea pigs were measured under free-field conditions for 122 locations covering the upper hemisphere. From 257 neurons, 94% responded to the short (50-ms) white noise stimulus at 70 dB sound pressure level (SPL). Out of these neurons, 80% were spatially tuned with a receptive field that is smaller than a hemifield (at 70 dB). The remainder responded omnidirectionally or showed fractured receptive fields. The majority of the neurons preferred directions in the contralateral hemisphere. However, preference for front or rear positions and high elevations occurred frequently. For stimulation at 70 dB SPL, the average diameter of the receptive fields, based on half-maximal response, was less than a quarter of the upper hemisphere. Neurons that preferred frontal directions responded weakly or showed no response to posterior directions and vice versa. Hence, front/back discrimination is present at the single-neuron level in the IC. When nonindividual HRTFs were used to create the stimuli, the spatial receptive fields of most neurons became larger, split into several parts, changed position, or the response became omnidirectional. Variation of absolute sound intensity had little effect on the preferred directions of the neurons over a range of 20 to 40 dB above threshold. With increasing intensity, most receptive fields remained constant or expanded. Furthermore, we tested the influence of binaural decorrelation and stimulus bandwidth on spatial tuning. The vast majority of neurons with a low characteristic frequency (<2.5 kHz) lost spatial tuning under stimulation with binaurally uncorrelated noise, whereas high-frequency units were mostly unaffected. Most neurons that showed spatial tuning under broadband stimulation (white noise and 1 octave wide noise) turned omnidirectional when stimulated with 1/3 octave wide noise.

摘要

下丘(IC)中的神经元如何编码声音的空间位置?我们使用虚拟听觉环境解决了这个问题。为此,在自由场条件下测量了18只豚鼠的个体头部相关传递函数(HRTF),涵盖上半球的122个位置。在257个神经元中,94%对70分贝声压级(SPL)的短(50毫秒)白噪声刺激有反应。在这些神经元中,80%在空间上具有调谐特性,其感受野小于一个半野(在70分贝时)。其余的神经元对声音全向反应或表现出破碎的感受野。大多数神经元偏好对侧半球的方向。然而,对前后位置和高仰角的偏好也经常出现。对于70分贝SPL的刺激,基于半最大反应的感受野平均直径小于上半球的四分之一。偏好前方方向的神经元对后方方向反应微弱或无反应,反之亦然。因此,在IC的单神经元水平上存在前后辨别能力。当使用非个体HRTF来创建刺激时,大多数神经元的空间感受野会变大、分裂成几个部分、改变位置,或者反应变为全向性。在高于阈值20至40分贝的范围内,绝对声音强度的变化对神经元的偏好方向影响很小。随着强度增加,大多数感受野保持不变或扩大。此外,我们测试了双耳去相关和刺激带宽对空间调谐的影响。绝大多数特征频率低(<2.5千赫)的神经元在双耳不相关噪声刺激下失去空间调谐,而高频单元大多不受影响。大多数在宽带刺激(白噪声和1倍频程宽噪声)下表现出空间调谐的神经元,在用1/3倍频程宽噪声刺激时变为全向反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验