Suppr超能文献

独立式(18)F-FDG全身PET与CT的自动三维配准。

Automated 3-dimensional registration of stand-alone (18)F-FDG whole-body PET with CT.

作者信息

Slomka Piotr J, Dey Damini, Przetak Christian, Aladl Usaf E, Baum Richard P

机构信息

Diagnostic Radiology and Nuclear Medicine Department, University of Western Ontario, London, Ontario, Canada.

出版信息

J Nucl Med. 2003 Jul;44(7):1156-67.

Abstract

UNLABELLED

Image registration and fusion of whole-body (18)F-FDG PET with thoracic CT would allow combination of anatomic detail from CT with functional PET information, which could lead to improved diagnosis or PET-based radiotherapy planning.

METHODS

We have designed a practical and fully automated algorithm for the elastic 3-dimensional image registration of whole-body PET and CT images, which compensates for the nonlinear deformation due to breath-hold CT imaging. A set of 18 PET and CT patient datasets has been evaluated by the algorithm. Initially, a 9-parameter linear registration is performed by maximizing the mutual information (MI)-based cost function, between the CT and the combination of emission and transmission PET volumes, using progressively increased matrix sizes to increase speed and provide better convergence. Subsequently, lung contours on transmission maps and corresponding contours on CT volumes are automatically detected. A large number (few hundreds) of corresponding point pairs are automatically derived, defining a thin-plate-spline (TPS) elastic transformation of PET emission and transmission scans to match the CT scan.

RESULTS

In all 18 patients the automatic linear registration with multiresolution converged close to the final alignment, but, in 10 cases, the nonlinear differences in the diaphragm position and chest wall were still clearly visible. The nonlinear adjustment, which was in the order of 40-75 mm, significantly improved the alignment between breath-hold CT and PET, especially in the areas of the diaphragm. Lung volumes measured from transmission and CT scans match closely after the warping has been applied. The average computation time is <40 s for the linear component and <30 s for the nonlinear component for a typical PET scan with 4-6 bed positions.

CONCLUSION

We have developed a technique for automatic nonlinear registration of CT and PET whole-body images to common spatial coordinates. This technique may be applied for automatic fusion of PET with CT acquired on stand-alone scanners during normal breathing or breath-hold data acquisition.

摘要

未标注

全身(18)F-FDG PET与胸部CT的图像配准和融合能够将CT的解剖细节与PET的功能信息相结合,这可能会改善诊断或基于PET的放射治疗计划。

方法

我们设计了一种实用且完全自动化的算法,用于全身PET和CT图像的弹性三维图像配准,该算法可补偿屏气CT成像导致的非线性变形。一组18例PET和CT患者数据集已通过该算法进行评估。最初,通过最大化基于互信息(MI)的代价函数,在CT与发射和透射PET体积的组合之间进行9参数线性配准,使用逐渐增大的矩阵尺寸来提高速度并提供更好的收敛性。随后,自动检测透射图上的肺轮廓和CT体积上的相应轮廓。自动导出大量(数百个)对应点对,定义PET发射和透射扫描的薄板样条(TPS)弹性变换以匹配CT扫描。

结果

在所有18例患者中,多分辨率自动线性配准收敛到接近最终对齐,但在10例中,膈肌位置和胸壁的非线性差异仍然清晰可见。约40 - 75毫米量级的非线性调整显著改善了屏气CT与PET之间的对齐,尤其是在膈肌区域。应用变形后,从透射和CT扫描测量的肺体积紧密匹配。对于具有4 - 6个床位位置的典型PET扫描,线性部分的平均计算时间<40秒,非线性部分<30秒。

结论

我们开发了一种将CT和PET全身图像自动非线性配准到共同空间坐标的技术。该技术可应用于在正常呼吸或屏气数据采集期间对PET与独立扫描仪上获取的CT进行自动融合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验