Suppr超能文献

端到端链接(EEL)聚类算法:关于皮肤中迈斯纳小体分布的研究

End-to-end linkage (EEL) clustering algorithm: a study on the distribution of Meissner corpuscles in the skin.

作者信息

Güçlü Burak, Bolanowski Stanley J, Pawson Lorraine

机构信息

Institute for Sensory Research, 621 Skytop Road, Syracuse, NY 13244-5290, USA.

出版信息

J Comput Neurosci. 2003 Jul-Aug;15(1):19-28. doi: 10.1023/a:1024466617694.

Abstract

A novel hierarchical clustering algorithm was applied to the distribution of Meissner corpuscles in the skin of mammals. This method, called end-to-end linkage (EEL), is useful for grouping data that consists of chain-like contingencies in the multivariable space. Unlike the traditional techniques which uncover hyperspherical clusters (e.g. single linkage), EEL considers the shortest distance between the predefined end pairs of the two clusters as an inter-group distance. This scheme allows characterizing the internal structure of data better than other hierarchical techniques. The anatomical data used in the case study is important for studying the sense of touch. The results show a substantial improvement over the traditional single-linkage method. On average, the number of correctly classified corpuscles is increased to twice the number identified by the single-linkage method. EEL can also be used for analyzing other sensory modalities where geometric relationships need to be explored. In addition, the report contains corpuscle density and epidermal-ridge width data obtained from several species.

摘要

一种新颖的层次聚类算法被应用于哺乳动物皮肤中迈斯纳小体的分布。这种方法称为端到端链接(EEL),对于在多变量空间中由链状突发事件组成的数据分组很有用。与揭示超球形聚类的传统技术(例如单链接)不同,EEL将两个聚类的预定义端对之间的最短距离视为组间距离。该方案比其他层次技术能更好地表征数据的内部结构。案例研究中使用的解剖学数据对于研究触觉很重要。结果表明,与传统的单链接方法相比有显著改进。平均而言,正确分类的小体数量增加到单链接方法识别数量的两倍。EEL还可用于分析其他需要探索几何关系的感觉模态。此外,该报告包含从多个物种获得的小体密度和表皮嵴宽度数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验