Suppr超能文献

Gold-coated fused-silica sheathless electrospray emitters based on vapor-deposited titanium adhesion layers.

作者信息

Nilsson Stefan, Klett Oliver, Svedberg Malin, Amirkhani Ardeshir, Nyholm Leif

机构信息

Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden.

出版信息

Rapid Commun Mass Spectrom. 2003;17(14):1535-40. doi: 10.1002/rcm.1082.

Abstract

Gold-coated fused-silica electrospray (ES) emitters based on vapor-deposited adhesion layers of titanium have been manufactured to investigate the possibilities of producing durable ES emitters applicable in chip-based analytical devices. The stabilities of the emitters were studied by both electrospray and electrochemical experiments and a marked increase in the emitter lifetime, compared to that for Cr/Au coated emitters, was found for the Ti/Au emitters in the ES durability tests. This indicates that Ti (rather than Cr) adhesion layers should be used in association with large-scale fabrication of ES emitters by vapor-deposition techniques. The lifetime of about 500-700 hours also allowed the Ti/Au-coated emitter to be used as an integrated part of a capillary liquid chromatography column coupled to a mass spectrometer in a series of LC/MS experiments. The Ti/Au coating was further studied by electrochemical techniques and scanning electron microscopy in conjunction with X-ray spectroscopy. It is shown that the eventual failure of the Ti/Au emitters in ES experiments was due to an almost complete detachment of the gold layer. Experimental evidence suggests that the detachment of the gold coating was due to a reduced adhesion to the titanium layer during oxidation in positive electrospray. Most likely, this was caused by the formation of an oxide layer on the titanium film. It is thus shown that unlimited emitter stabilities are not automatically obtained even if the metallic adhesion layer is stabilized by an oxide formation under positive electrospray conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验