Suppr超能文献

Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent levy statistics in the strong adsorption regime.

作者信息

Levitz P E

机构信息

PMC-CNRS, Ecole Polytechnique, 91128 Palaiseau, France.

出版信息

Magn Reson Imaging. 2003 Apr-May;21(3-4):177-84. doi: 10.1016/s0730-725x(03)00122-x.

Abstract

Mesoscopic media such as porous materials or colloidal pastes develop large specific surface area which strongly influence the dynamics of the embedded fluid. This fluid confinement can be used either to probe the interfacial geometry (frozen porous media) or the particle dynamics (paste and colloidal glass). In the strong adsorption regime, it was recently proposed that the effective surface diffusion on flat surface is anomalous and exhibits long time pathology (Lévy walks). This phenomena is directly related to the time and space properties of loop trajectories appearing in the bulk between a desorption and a readsorption step. The Lévy statistics extends the time domain of the embedded fluid dynamics toward the low frequency regime. An interesting way to probe such a slow interfacial process is to use field cycling NMR relaxometry. In the first part of this paper, we propose a simple theoretical model of NMR dispersion which only involves elementary time steps of the solvent dynamics near an interface (loops, trains, tails in relation with the confining geometry). In the second part, field cycling NMR relaxometry is used to probe the slow solvent dynamics in two type of interfacial systems: (i) a colloidal glass made of thin and flat particles (ii) two fully saturated porous media, the Vycor glass and MCM48 respectively. Experimental results are critically compared to closed-form analytical expressions and numerical simulations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验