Raushel Frank M, Thoden James B, Holden Hazel M
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, USA.
Acc Chem Res. 2003 Jul;36(7):539-48. doi: 10.1021/ar020047k.
As a result of recent advances in molecular cloning, protein expression, and X-ray crystallography, it has now become feasible to examine complicated protein structures at high resolution. For those enzymes with multiple catalytic sites, a common theme is beginning to emerge; the existence of molecular tunnels that connect one active site with another. The apparent mechanistic advantages rendered by these molecular conduits include the protection of unstable intermediates and an improvement in catalytic efficiency by blocking the diffusion of intermediates into the bulk solvent. Since the first molecular tunnel within tryptophan synthase was discovered in 1988, tunnels within carbamoyl phosphate synthetase, glutamine phosphoribosylpyrophosphate amidotransferase, asparagine synthetase, glutamate synthase, imidazole glycerol phosphate synthase, glucosamine 6-phosphate synthase, and carbon monoxide dehydrogenase/acetyl-CoA synthase have been identified. The translocation of ammonia, derived from the hydrolysis of glutamine, is the most abundant functional requirement for a protein tunnel identified thus far. Here we describe and summarize our current understanding of molecular tunnels observed in various enzyme systems.
由于最近在分子克隆、蛋白质表达和X射线晶体学方面取得的进展,现在以高分辨率研究复杂的蛋白质结构已变得可行。对于那些具有多个催化位点的酶,一个共同的主题开始显现出来;即存在将一个活性位点与另一个活性位点连接起来的分子隧道。这些分子通道所带来的明显机制优势包括保护不稳定的中间体,以及通过阻止中间体扩散到大量溶剂中来提高催化效率。自1988年在色氨酸合酶中发现第一个分子隧道以来,已在氨甲酰磷酸合成酶、谷氨酰胺磷酸核糖焦磷酸酰胺转移酶、天冬酰胺合成酶、谷氨酸合酶、咪唑甘油磷酸合酶、葡糖胺6-磷酸合酶以及一氧化碳脱氢酶/乙酰辅酶A合酶中鉴定出了隧道。源自谷氨酰胺水解的氨的转运,是迄今为止所鉴定出的蛋白质隧道最丰富的功能需求。在这里,我们描述并总结了我们目前对在各种酶系统中观察到的分子隧道的理解。