Sauret-Güeto Susanna, Ramos-Valdivia Ana, Ibáñez Ester, Boronat Albert, Rodríguez-Concepción Manuel
Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Spain.
Biochem Biophys Res Commun. 2003 Jul 25;307(2):408-15. doi: 10.1016/s0006-291x(03)01211-7.
The recently elucidated methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis is essential in eubacteria (including Escherichia coli), the malaria parasite, and plants, but is absent in animals. Therefore, the pathway enzymes are promising targets for the development of novel herbicides and antimicrobials that are potentially innocuous for humans. For an effective drug design, it is important to identify the residues required to preserve the structure and activity of the MEP pathway enzymes. Here, we report a genetic approach to identify such residues in E. coli. A strain harboring a synthetic operon that allows the production of isoprenoids through a MEP-independent pathway was used to screen for the otherwise lethal loss-of-function point mutations in the MEP pathway genes generated by ethylmethane sulfonate (EMS) mutagenesis. Besides confirming the role of residues involved in catalysis, our results define regions within several of the proteins with a potential key role for enzyme function.
最近阐明的用于类异戊二烯生物合成的甲基赤藓糖醇磷酸(MEP)途径在真细菌(包括大肠杆菌)、疟原虫和植物中至关重要,但在动物中不存在。因此,该途径的酶是开发对人类可能无害的新型除草剂和抗菌剂的有前景的靶点。为了进行有效的药物设计,确定维持MEP途径酶的结构和活性所需的残基很重要。在此,我们报告一种在大肠杆菌中鉴定此类残基的遗传学方法。使用携带合成操纵子的菌株,该操纵子允许通过不依赖MEP的途径产生类异戊二烯,以筛选由甲基磺酸乙酯(EMS)诱变产生的MEP途径基因中原本致命的功能丧失点突变。除了证实参与催化的残基的作用外,我们的结果还确定了几种蛋白质中对酶功能可能起关键作用的区域。