Suppr超能文献

[Method for measuring respiration in sleep: capnography for determining ventilation].

作者信息

Schäfer T

机构信息

Abteilung für Angewandte Physiologie, Ruhr-Universität Bochum.

出版信息

Biomed Tech (Berl). 2003 Jun;48(6):170-5. doi: 10.1515/bmte.2003.48.6.170.

Abstract

Ventilation serves the exchange of gases between the organism and the environment. Oxygen uptake and CO2 elimination are controlled by feedback loops, that keep fluctuations in arterial CO2 pressure (PaCO2) within narrow limits Disorders in the central regulation of breathing, or impairment of the respiratory apparatus, may result in a mismatch between metabolic CO2 production and ventilatory CO2, elimination and thus in fluctuations in the PaCO2: inappropriately increased ventilation (hyperventilation) causes hypocapnia, and reduced ventilation (hypoventilation) causes hypercapnia. In order to detect such disorders during sleep, PCO2 measurement is of great importance, but direct and continuous measurement of the PaCO2 is invasive and thus unsuitable in the clinical setting. An alternative is capnography, the continuous measurement of PCO2 in inhaled and exhaled air on the basis of ultrared light absorption. This paper reviews the method, its features and limitations, and the possibilities of improving capnography to better detect sleep-related breathing disorders. In addition, data obtained from 57 patients with predominantly normal lung function, but suspected sleep disordered breathing are presented. Simultaneous measurements of capnography PETCO2) and capillary PaCO2 revealed a PETCO2 difference of +0.63 +/- 3.3 (SD) Torr. PaCO2 (38.8 +/- 4.1 Torr) and PETCO2 (38.1 +/- 4.3 Torr) were not significantly different with a correlation coefficient of r = 0.68 (p < 0.001). Thus 46% of the variation in PETCO2 was explained by changes in PaCO2. Currently the literature contains few further data on capnography during sleep. It is concluded that, provided the limitations of the method are respected and comparison with the PETCO2 is made, capnography may be a useful, noninvasive and continuous measuring method for assessing ventilation during sleep in patients with suspected sleep related breathing disorders.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验