Bae M, Cho S, Song J, Lee G Y, Kim K, Yang J, Cho K, Kim S Y, Byun Y
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea.
Drugs Exp Clin Res. 2003;29(1):15-23.
This article proposes a novel cancer-targeting drug-delivery system based on angiogenesis, in which the enzymatic activity of type IV collagenases is used to cleave the inactive drug conjugate, thereby activating drug fragments. In this study, the amount and distribution of metalloprotease (MMP)-2 and MMP-9 secreted from Lewis lung carcinoma (LCC) cells and the formation of blood vessels were evaluated by gelatin zymography, in situ film zymography and immunostaining. LLC cells secreted MMP-2 and MMP-9, thereby distributing large amounts of MMPs around a solid tumor. The newly developed blood vessels were also found in a solid LLC tumor. The anticancer drug conjugate (mPEG-GPLGV-DOX) was synthesized by conjugating doxorubicin with Gly-Pro-Leu-Gly-Val (GPLGV) peptide and poly(ethylene glycol) methyl ether (mPEG). GPLGV pentapeptide was used as a substrate for MMP-2 and MMP-9, where the cleavage of Gly-Val bond by MMP was expected. In addition, mPEG was grafted to peptide-doxorubicin conjugate to increase the circulation time in the body and to reduce the cytotoxicity of the anticancer drug. The mPEG-GPLGV-DOX conjugate formed a micelle structure in aqueous solution, with a critical micelle concentration (CMC) of about 0.25 mg/ml and a diameter of 73.1 +/- 12.7 nm at 1 mg/ml. In an in vivo experiment, mPEG-GPLGV-DOX showed 20% chemotherapeutic activity compared with free doxorubicin. Although a 50 mg/kg dose of mPEG-GPLGV-DOX showed similar therapeutic effects to a 10 mg/kg dose of doxorubicin, the life span of mice in the conjugate group was significantly increased. Therefore, an efficient anticancer drug-delivery system could be created by increasing therapeutic efficiency and decreasing drug-toxicity by optimizing the degradation rate of the peptide link by MMP and circulation time in the body.
本文提出了一种基于血管生成的新型癌症靶向药物递送系统,其中IV型胶原酶的酶活性用于切割无活性的药物偶联物,从而激活药物片段。在本研究中,通过明胶酶谱法、原位膜酶谱法和免疫染色评估了Lewis肺癌(LCC)细胞分泌的金属蛋白酶(MMP)-2和MMP-9的量及分布以及血管的形成。LLC细胞分泌MMP-2和MMP-9,从而在实体瘤周围分布大量MMP。在实体LLC肿瘤中也发现了新形成的血管。抗癌药物偶联物(mPEG-GPLGV-DOX)通过将阿霉素与甘氨酸-脯氨酸-亮氨酸-甘氨酸-缬氨酸(GPLGV)肽和聚乙二醇甲醚(mPEG)偶联而合成。GPLGV五肽用作MMP-2和MMP-9的底物,预期MMP会切割甘氨酸-缬氨酸键。此外,将mPEG接枝到肽-阿霉素偶联物上以增加其在体内的循环时间并降低抗癌药物的细胞毒性。mPEG-GPLGV-DOX偶联物在水溶液中形成胶束结构,临界胶束浓度(CMC)约为0.25 mg/ml,在1 mg/ml时直径为73.1±12.7 nm。在体内实验中,与游离阿霉素相比,mPEG-GPLGV-DOX显示出20%的化疗活性。尽管50 mg/kg剂量的mPEG-GPLGV-DOX显示出与10 mg/kg剂量的阿霉素相似的治疗效果,但偶联物组小鼠的寿命显著延长。因此,通过优化MMP对肽键的降解速率和在体内的循环时间来提高治疗效率并降低药物毒性,可以创建一种高效的抗癌药物递送系统。