Suppr超能文献

细菌群体中突变基因的进化:环境变化和时间的作用。

The evolution of mutator genes in bacterial populations: the roles of environmental change and timing.

作者信息

Tanaka Mark M, Bergstrom Carl T, Levin Bruce R

机构信息

Department of Biology, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Genetics. 2003 Jul;164(3):843-54. doi: 10.1093/genetics/164.3.843.

Abstract

Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates.

摘要

最近的研究发现,在临床和实验室群体中,具有较高基因组突变率的细菌频率很高。鉴于早期的实验和理论研究,这些观察结果可能看起来令人惊讶。突变基因(即提高基因组突变率的基因)可能会诱导有害突变,因此会遭受间接的选择劣势;与此同时,携带这些基因的细菌只有通过在其他位点产生有益突变才能增加其频率。然而,当携带突变基因的克隆很少见时,这些有益突变更有可能出现在数量大得多的非突变群体成员中。那么突变体是如何变得普遍的呢?为了解决这个问题,我们建立了一个面对不断变化环境的细菌种群动态模型。通过分析和模拟程序,我们探索了最初罕见的突变等位基因频率上升的过程。我们证明,在环境条件发生变化之后,在祖先亚群被淘汰之前,突变体亚群会有相对较长的时间产生有益突变。如果有益突变出现得足够早,突变体的总体频率将攀升至高于过程开始时的水平。随后产生有益突变的概率也会增加。通过这种方式,突变体可以在连续的选择性扫荡中增加其频率。我们讨论了这些理论结果与抗生素耐药性和突变率进化相关的影响和预测。

相似文献

2
The balance between mutators and nonmutators in asexual populations.
Genetics. 2011 Aug;188(4):997-1014. doi: 10.1534/genetics.111.128116. Epub 2011 Jun 6.
4
Mutator dynamics in fluctuating environments.
Proc Biol Sci. 2002 Mar 22;269(1491):591-7. doi: 10.1098/rspb.2001.1902.
5
Enrichment and elimination of mutY mutators in Escherichia coli populations.
Genetics. 2002 Nov;162(3):1055-62. doi: 10.1093/genetics/162.3.1055.
6
Mutation accumulation and fitness in mutator subpopulations of Escherichia coli.
Biol Lett. 2012 Dec 5;9(1):20120961. doi: 10.1098/rsbl.2012.0961. Print 2013 Feb 23.
7
Fixation probability of rare nonmutator and evolution of mutation rates.
Ecol Evol. 2016 Jan 11;6(3):755-64. doi: 10.1002/ece3.1932. eCollection 2016 Feb.
8
Fixation probability of a nonmutator in a large population of asexual mutators.
J Theor Biol. 2017 Nov 21;433:85-93. doi: 10.1016/j.jtbi.2017.08.027. Epub 2017 Sep 8.
9
Coevolution with viruses drives the evolution of bacterial mutation rates.
Nature. 2007 Dec 13;450(7172):1079-81. doi: 10.1038/nature06350. Epub 2007 Dec 2.
10

引用本文的文献

2
Evolution of evolvability in rapidly adapting populations.
Nat Ecol Evol. 2024 Nov;8(11):2085-2096. doi: 10.1038/s41559-024-02527-0. Epub 2024 Sep 11.
3
Shifts in Mutation Bias Promote Mutators by Altering the Distribution of Fitness Effects.
Am Nat. 2023 Oct;202(4):503-518. doi: 10.1086/726010. Epub 2023 Aug 23.
7
Complex Ecotype Dynamics Evolve in Response to Fluctuating Resources.
mBio. 2022 Jun 28;13(3):e0346721. doi: 10.1128/mbio.03467-21. Epub 2022 May 16.
9
Selection on mutators is not frequency-dependent.
Elife. 2019 Nov 7;8:e51177. doi: 10.7554/eLife.51177.
10
Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress.
Trends Genet. 2019 Nov;35(11):804-817. doi: 10.1016/j.tig.2019.08.002. Epub 2019 Sep 13.

本文引用的文献

1
The fixation probability of a beneficial allele in a population dividing by binary fission.
Genetica. 2002 Aug;115(3):283-7. doi: 10.1023/a:1020687416478.
2
Mutator dynamics in fluctuating environments.
Proc Biol Sci. 2002 Mar 22;269(1491):591-7. doi: 10.1098/rspb.2001.1902.
3
Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori.
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14607-12. doi: 10.1073/pnas.241517298. Epub 2001 Nov 20.
4
Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut.
Science. 2001 Mar 30;291(5513):2606-8. doi: 10.1126/science.1056421.
5
The evolution of mutation rates: separating causes from consequences.
Bioessays. 2000 Dec;22(12):1057-66. doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W.
6
Mutators and sex in bacteria: conflict between adaptive strategies.
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10465-70. doi: 10.1073/pnas.180063397.
7
Natural selection, infectious transfer and the existence conditions for bacterial plasmids.
Genetics. 2000 Aug;155(4):1505-19. doi: 10.1093/genetics/155.4.1505.
8
The rate of adaptation in asexuals.
Genetics. 2000 Jun;155(2):961-8. doi: 10.1093/genetics/155.2.961.
9
Lateral gene transfer and the nature of bacterial innovation.
Nature. 2000 May 18;405(6784):299-304. doi: 10.1038/35012500.
10
High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.
Science. 2000 May 19;288(5469):1251-4. doi: 10.1126/science.288.5469.1251.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验